Toward Highly Selective Electrochemical CO2 Reduction using Metal-Free Heteroatom-Doped Carbon

被引:65
作者
Pan, Binbin [1 ]
Zhu, Xiaorong [2 ]
Wu, Yunling [1 ]
Liu, Tongchao [3 ,4 ]
Bi, Xuanxuan [3 ]
Feng, Kun [1 ]
Han, Na [1 ]
Zhong, Jun [1 ]
Lu, Jun [3 ]
Li, Yafei [2 ]
Li, Yanguang [1 ]
机构
[1] Soochow Univ, Jiangsu Key Lab Carbon Based Funct Mat & Devices, Inst Funct Nano & Soft Mat FUNSOM, Suzhou 215123, Peoples R China
[2] Nanjing Normal Univ, Coll Chem & Mat Sci, Nanjing 210023, Peoples R China
[3] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA
[4] Peking Univ, Shenzhen Grad Sch, Sch Adv Mat, Shenzhen 518055, Peoples R China
关键词
CO(2)reduction; heteroatom codoping; mesoporous carbon; selectivity; OXYGEN REDUCTION; NITROGEN; EFFICIENT; PHOSPHORUS; CATALYSTS; ELECTROREDUCTION; INSIGHTS; DEFECTS; DENSITY;
D O I
10.1002/advs.202001002
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
There are growing interests in metal-free heteroatom-doped carbons for electrochemical CO(2)reduction. Previous studies extensively focus on the effect of N-doping, and their products severely suffer from low current density (mostly <2 mA cm(-2)) and limited selectivity (<90%). Here, it is reported that heteroatom codoping offers a promising solution to the above challenge. As a proof of concept, N,P-codoped mesoporous carbon is prepared by annealing phytic-acid-functionalized ZIF-8 in NH3. In CO2-saturated 0.5mNaHCO(3), the catalyst enables CO(2)reduction to CO with great selectivity close to 100% and large CO partial current density (approximate to 8 mA cm(-2)), which are, to the best of knowledge, superior to all other relevant competitors. Theoretical simulations show that the improved activity and selectivity are stemmed from the enhanced surface adsorption of *COOH and *CO intermediates as a result of the synergy of N and P codoping.
引用
收藏
页数:6
相关论文
共 40 条
[1]   What Should We Make with CO2 and How Can We Make It? [J].
Bushuyev, Oleksandr S. ;
De Luna, Phil ;
Cao Thang Dinh ;
Tao, Ling ;
Saur, Genevieve ;
van de lagemaat, Jao ;
Kelley, Shana O. ;
Sargent, Edward H. .
JOULE, 2018, 2 (05) :825-832
[2]   Selective Etching of Nitrogen-Doped Carbon by Steam for Enhanced Electrochemical CO2 Reduction [J].
Cui, Xiaoqi ;
Pan, Zhiyong ;
Zhang, Lijuan ;
Peng, Huisheng ;
Zheng, Gengfeng .
ADVANCED ENERGY MATERIALS, 2017, 7 (22)
[3]   Electroreduction of CO2 to CO on a Mesoporous Carbon Catalyst with Progressively Removed Nitrogen Moieties [J].
Daiyan, Rahman ;
Tan, Xin ;
Chen, Rui ;
Saputera, Wibawa Hendra ;
Tahini, Hassan A. ;
Lovell, Emma ;
Ng, Yun Hau ;
Smith, Sean C. ;
Dai, Liming ;
Lu, Xunyu ;
Amal, Rose .
ACS ENERGY LETTERS, 2018, 3 (09) :2292-2298
[4]   What would it take for renewably powered electrosynthesis to displace petrochemical processes? [J].
De Luna, Phil ;
Hahn, Christopher ;
Higgins, Drew ;
Jaffer, Shaffiq A. ;
Jaramillo, Thomas F. ;
Sargent, Edward H. .
SCIENCE, 2019, 364 (6438) :350-+
[5]   Heteroatom-Doped Graphene-Based Materials for Energy-Relevant Electrocatalytic Processes [J].
Duan, Jingjing ;
Chen, Sheng ;
Jaroniec, Mietek ;
Qiao, Shi Zhang .
ACS CATALYSIS, 2015, 5 (09) :5207-5234
[6]   Metal-Free Carbon Materials for CO2 Electrochemical Reduction [J].
Duan, Xiaochuan ;
Xu, Jiantie ;
Wei, Zengxi ;
Ma, Jianmin ;
Guo, Shaojun ;
Wang, Shuangyin ;
Liu, Huakun ;
Dou, Shixue .
ADVANCED MATERIALS, 2017, 29 (41)
[7]   Mechanism of CO2 Reduction at Copper Surfaces: Pathways to C2 Products [J].
Garza, Alejandro J. ;
Bell, Alexis T. ;
Head-Gordon, Martin .
ACS CATALYSIS, 2018, 8 (02) :1490-1499
[8]   Identification of Possible Pathways for C-C Bond Formation during Electrochemical Reduction of CO2: New Theoretical Insights from an Improved Electrochemical Model [J].
Goodpaster, Jason D. ;
Bell, Alexis T. ;
Head-Gordon, Martin .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2016, 7 (08) :1471-1477
[9]   Supported Cobalt Polyphthalocyanine for High-Performance Electrocatalytic CO2 Reduction [J].
Han, Na ;
Wang, Yu ;
Ma, Lu ;
Wen, Jianguo ;
Li, Jing ;
Zheng, Hechuang ;
Nie, Kaiqi ;
Wang, Xinxia ;
Zhao, Feipeng ;
Li, Yafei ;
Fan, Jian ;
Zhong, Jun ;
Wu, Tianpin ;
Miller, Dean J. ;
Lu, Jun ;
Lee, Shuit-Tong ;
Li, Yanguang .
CHEM, 2017, 3 (04) :652-664
[10]   Multifunctional Carbon-Based Metal-Free Electrocatalysts for Simultaneous Oxygen Reduction, Oxygen Evolution, and Hydrogen Evolution [J].
Hu, Chuangang ;
Dai, Liming .
ADVANCED MATERIALS, 2017, 29 (09)