A global catalogue of large SO2 sources and emissions derived from the Ozone Monitoring Instrument

被引:191
作者
Fioletov, Vitali E. [1 ]
McLinden, Chris A. [1 ]
Krotkov, Nickolay [2 ]
Li, Can [2 ,3 ]
Joiner, Joanna [1 ]
Theys, Nicolas [4 ]
Carn, Simon [5 ,6 ]
Moran, Mike D. [1 ]
机构
[1] Environm Canada, Air Qual Res Div, Toronto, ON, Canada
[2] NASA, Atmospher Chem & Dynam Lab, Goddard Space Flight Ctr, Green Belt, MD USA
[3] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA
[4] Belgian Inst Space Aeron BIRA IASB, Brussels, Belgium
[5] Michigan Technol Univ, Dept Geol & Min Engn & Sci, Houghton, MI 49931 USA
[6] Smithsonian Inst, Natl Museum Nat Hist, Dept Mineral Sci, Washington, DC 20560 USA
关键词
SULFUR-DIOXIDE EMISSIONS; GROUND-BASED MEASUREMENTS; FIRED POWER-PLANTS; EL-CHICHON; SATELLITE RETRIEVALS; BOUNDARY-LAYER; AIR-QUALITY; VOLCANO; OMI; CLOUDS;
D O I
10.5194/acp-16-11497-2016
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Sulfur dioxide (SO2) measurements from the Ozone Monitoring Instrument (OMI) satellite sensor processed with the new principal component analysis (PCA) algorithm were used to detect large point emission sources or clusters of sources. The total of 491 continuously emitting point sources releasing from about 30 kt yr(-1) to more than 4000 kt yr(-1) of SO2 per year have been identified and grouped by country and by primary source origin: volcanoes (76 sources); power plants (297); smelters (53); and sources related to the oil and gas industry (65). The sources were identified using different methods, including through OMI measurements themselves applied to a new emission detection algorithm, and their evolution during the 2005-2014 period was traced by estimating annual emissions from each source. For volcanic sources, the study focused on continuous degassing, and emissions from explosive eruptions were excluded. Emissions from degassing volcanic sources were measured, many for the first time, and collectively they account for about 30% of total SO2 emissions estimated from OMI measurements, but that fraction has increased in recent years given that cumulative global emissions from power plants and smelters are declining while emissions from oil and gas industry remained nearly constant. Anthropogenic emissions from the USA declined by 80% over the 2005-2014 period as did emissions from western and central Europe, whereas emissions from India nearly doubled, and emissions from other large SO2-emitting regions (South Africa, Russia, Mexico, and the Middle East) remained fairly constant. In total, OMI-based estimates account for about a half of total reported anthropogenic SO2 emissions; the remaining half is likely related to sources emitting less than 30 kt yr(-1) and not detected by OMI.
引用
收藏
页码:11497 / 11519
页数:23
相关论文
共 92 条
  • [1] Impacts on Ambient Air Quality Due to Flaring Activities in One of Oman's Oilfields
    Abdul-Wahab, Sabah
    Ali, Sappurd
    Sardar, Sabir
    Irfan, Naseem
    [J]. ARCHIVES OF ENVIRONMENTAL & OCCUPATIONAL HEALTH, 2012, 67 (01) : 3 - 14
  • [2] Al-Hamad Khaireyah Kh, 2008, American Journal of Environmental Sciences, V4, P31, DOI 10.3844/ajessp.2008.31.38
  • [3] Barringer R., 1977, Journal of the British Interplanetary Society, V30, P178
  • [4] Retrieval of near-surface sulfur dioxide (SO2) concentrations at a global scale using IASI satellite observations
    Bauduin, Sophie
    Clarisse, Lieven
    Hadji-Lazaro, Juliette
    Theys, Nicolas
    Clerbaux, Cathy
    Coheur, Pierre-Francois
    [J]. ATMOSPHERIC MEASUREMENT TECHNIQUES, 2016, 9 (02) : 721 - 740
  • [5] IASI observations of sulfur dioxide (SO2) in the boundary layer of Norilsk
    Bauduin, Sophie
    Clarisse, Lieven
    Clerbaux, Cathy
    Hurtmans, Daniel
    Coheur, Pierre-Francois
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2014, 119 (07) : 4253 - 4263
  • [6] Estimating the volcanic emission rate and atmospheric lifetime of SO2 from space: a case study for Kilauea volcano, Hawai'i
    Beirle, S.
    Hoermann, C.
    de Vries, M. Penning
    Doerner, S.
    Kern, C.
    Wagner, T.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2014, 14 (16) : 8309 - 8322
  • [7] EVIDENCE OF SO2 ON IO FROM UV OBSERVATIONS
    BERTAUX, JL
    BELTON, MJS
    [J]. NATURE, 1979, 282 (5741) : 813 - 815
  • [8] Bingham T. H., 1973, PROJECTION EFFECTIVE
  • [9] Exceptional sulfur degassing from Nyamuragira volcano, 1979-2005
    Bluth, G. J. S.
    Carn, S. A.
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2008, 29 (22) : 6667 - 6685
  • [10] GLOBAL TRACKING OF THE SO2 CLOUDS FROM THE JUNE, 1991 MOUNT-PINATUBO ERUPTIONS
    BLUTH, GJS
    DOIRON, SD
    SCHNETZLER, CC
    KRUEGER, AJ
    WALTER, LS
    [J]. GEOPHYSICAL RESEARCH LETTERS, 1992, 19 (02) : 151 - 154