Adaptive variational multiscale method for bingham flows

被引:15
|
作者
Riber, S. [1 ]
Valette, R. [1 ]
Mesri, Y. [1 ]
Hachem, E. [1 ]
机构
[1] MINES ParisTech PSL Res Univ, CEMEF Ctr Mat Forming, CNRS UMR 7635, CS 10207, Rue Claude Daunesse, F-06904 Sophia Antipolis, France
关键词
Bingham flow; Anisotropic meshing; Variational multiscale method; Papanastasiou regularization; Yield stress fluids; STABILIZED FINITE-ELEMENT; ANISOTROPIC MESH ADAPTATION; DRIVEN CAVITY FLOW; VOLUME METHOD; INCOMPRESSIBLE FLOWS; VISCOPLASTIC FLUID; TETRAHEDRAL MESHES; APPROXIMATION; FORMULATION; SIMULATION;
D O I
10.1016/j.compfluid.2016.08.011
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The simulation of viscoplasitc flows is still attracting considerable attention in many industrial applications. However, the underlying numerical discretization and regularization may suffer from numerical oscillations, in particular for high Bingham and Reynolds numbers flows. In this work, we investigate the Variational Multiscale stabilized finite element method in solving such flows. We combined it with a posteriori error estimator for anisotropic mesh adaptation, enhancing the use of the Papanastasiou regularization. Computational results are compared to existing data from the literature and new results have demonstrated that the approach can be applied for Bingham numbers higher than 1000 yielding accurate predictions. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:51 / 60
页数:10
相关论文
共 50 条
  • [31] A variational multiscale method for turbulent flow simulation with adaptive large scale space
    John, Volker
    Kindl, Adela
    JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (02) : 301 - 312
  • [32] The dissipative structure of variational multiscale methods for incompressible flows
    Principe, Javier
    Codina, Ramon
    Henke, Florian
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (13-16) : 791 - 801
  • [33] A reduced order variational multiscale approach for turbulent flows
    Giovanni Stabile
    Francesco Ballarin
    Giacomo Zuccarino
    Gianluigi Rozza
    Advances in Computational Mathematics, 2019, 45 : 2349 - 2368
  • [34] A reduced order variational multiscale approach for turbulent flows
    Stabile, Giovanni
    Ballarin, Francesco
    Zuccarino, Giacomo
    Rozza, Gianluigi
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2019, 45 (5-6) : 2349 - 2368
  • [35] A Wavelet-Adaptive Method for Multiscale Simulation of Turbulent Flows in Flying Insects
    Engels, Thomas
    Schneider, Kai
    Reiss, Julius
    Farge, Marie
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2021, 30 (04) : 1118 - +
  • [36] Numerical simulation of particle-laden flows by the residual-based variational multiscale method
    Guerra, Gabriel M.
    Zio, Souleymane
    Camata, Jose J.
    Rochinha, Fernando A.
    Elias, Renato N.
    Paraizo, Paulo L. B.
    Coutinho, Alvaro L. G. A.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2013, 73 (08) : 729 - 749
  • [37] A variational multiscale stabilized finite element method for the solution of the Euler equations of nonhydrostatic stratified flows
    Marras, Simone
    Moragues, Margarida
    Vazquez, Mariano
    Jorba, Oriol
    Houzeaux, Guillaume
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 236 : 380 - 407
  • [38] A POD-Based Variational Multiscale Method for Large Eddy Simulation of Turbulent Channel Flows
    Chen, Lin-Feng
    Hu, Xu-Qu
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2017, 14 (05)
  • [39] A finite element variational multiscale method for incompressible flows based on two local gauss integrations
    Zheng, Haibiao
    Hou, Yanren
    Shi, Feng
    Song, Lina
    JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (16) : 5961 - 5977
  • [40] A finite element variational multiscale method for incompressible flows based on the construction of the projection basis functions
    Yu, Jiaping
    Zheng, Haibiao
    Shi, Feng
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2012, 70 (06) : 793 - 804