A Note on Large Deviations for the Stable Marriage of Poisson and Lebesgue with Random Appetites

被引:1
作者
Diaz Pachon, Daniel Andres [1 ]
机构
[1] Univ Sao Paulo, Inst Stat Math, Sao Paulo, Brazil
关键词
Poisson process; Stable marriage; Random appetite; Large deviations;
D O I
10.1007/s10959-010-0304-9
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let IaS,a"e (d) be a set of centers chosen according to a Poisson point process in a"e (d) . Let psi be an allocation of a"e (d) to I in the sense of the Gale-Shapley marriage problem, with the additional feature that every center xi aI has an appetite given by a nonnegative random variable alpha. Generalizing some previous results, we study large deviations for the distance of a typical point xaa"e (d) to its center psi(x)aI, subject to some restrictions on the moments of alpha.
引用
收藏
页码:77 / 91
页数:15
相关论文
共 9 条
[1]  
Diaz D., 2009, THESIS IME USP
[2]  
Diaz D., 2009, PERCOLATION ST UNPUB
[3]   COLLEGE ADMISSIONS AND STABILITY OF MARRIAGE [J].
GALE, D ;
SHAPLEY, LS .
AMERICAN MATHEMATICAL MONTHLY, 1962, 69 (01) :9-&
[4]   A stable marriage of poisson and lebesgue [J].
Hoffman, Christopher ;
Holroyd, Alexander E. ;
Peres, Yuval .
ANNALS OF PROBABILITY, 2006, 34 (04) :1241-1272
[5]   Tail Bounds for the Stable Marriage of Poisson and Lebesgue [J].
Hoffman, Christopher ;
Holroyd, Alexander E. ;
Peres, Yuval .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2009, 61 (06) :1279-1299
[6]   Poisson matching [J].
Holroyd, Alexander E. ;
Pemantle, Robin ;
Peres, Yuval ;
Schramm, Oded .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2009, 45 (01) :266-287
[7]  
Meester R., 1996, CONTINUUM PERCOLATIO
[8]   LARGE DEVIATIONS OF SUMS OF INDEPENDENT RANDOM-VARIABLES [J].
NAGAEV, SV .
ANNALS OF PROBABILITY, 1979, 7 (05) :745-789
[9]  
Thorisson H, 1996, ANN PROBAB, V24, P2057