Addressing Production System Failures Using Multi-agent Control

被引:0
|
作者
Gautam, Rajesh [1 ]
Miyashita, Kazuo [2 ]
机构
[1] Univ Tsukuba, Tsukuba, Ibaraki 3058577, Japan
[2] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058564, Japan
来源
JOURNAL OF ADVANCED MECHANICAL DESIGN SYSTEMS AND MANUFACTURING | 2007年 / 1卷 / 02期
关键词
Multiagent Systems; Production Control; Artificial Intelligence;
D O I
10.1299/jamdsm.1.205
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Output in high-volume production facilities is limited by bottleneck machines. We propose a control mechanism by modeling workstations as agents that pull jobs from other agents based on their current WIP level and requirements. During failures, when flows of some jobs are disrupted, the agents pull alternative jobs to maintain utilization of their capacity at a high level. In this paper, we empirically demonstrate that the proposed mechanism can react to failures more appropriately than other control mechanisms using a benchmark problem of a semiconductor manufacturing process.
引用
收藏
页码:205 / 216
页数:12
相关论文
共 50 条
  • [41] Reactive shop-floor control with a multi-agent system
    Anciaux, D
    Roy, D
    Vernadat, F
    MANAGEMENT AND CONTROL OF PRODUCTION AND LOGISTICS, VOL 1 AND 2, 1998, : 425 - 430
  • [42] Formation control of a multi-agent system subject to Coulomb friction
    Jafarian, Matin
    Vos, Ewoud
    De Persis, Claudio
    van der Schaft, Arjan J.
    Scherpen, Jacquelien M. A.
    AUTOMATICA, 2015, 61 : 253 - 262
  • [43] An experimental benchmarking of two multi-agent architectures for production scheduling and control
    Cavalieri, S
    Garetti, M
    Macchi, M
    Taisch, M
    COMPUTERS IN INDUSTRY, 2000, 43 (02) : 139 - 152
  • [44] Modular Production Control with Multi-Agent Deep Q-Learning
    Gankin, Dennis
    Mayer, Sebastian
    Zinn, Jonas
    Vogel-Heuser, Birgit
    Endisch, Christian
    2021 26TH IEEE INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY AUTOMATION (ETFA), 2021,
  • [45] Internet of Things-Based Multi-Agent System for the Control of Smart Street Lighting
    Kouah, Sofia
    Saighi, Asma
    Ammi, Maryem
    Mohand, Aymen Nait Si
    Kouah, Marwa Ines
    Megias, David
    ELECTRONICS, 2024, 13 (18)
  • [46] Traffic flow control using multi-agent reinforcement learning
    Zeynivand, A.
    Javadpour, A.
    Bolouki, S.
    Sangaiah, A. K.
    Jafari, F.
    Pinto, P.
    Zhang, W.
    JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2022, 207
  • [47] Multi-agent Control Strategy for Microgrids using Petri Nets
    Chamorro, Harold R.
    Pazmino, Camilo
    Paez, David
    Jimenez, Fernando
    Guerrero, Josep M.
    Sood, Vijay K.
    Martinez, Wilmar
    2020 IEEE 29TH INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2020, : 1141 - 1146
  • [48] Integration of Process and Quality Control using Multi-Agent Technology
    Cristalli, C.
    Foehr, M.
    Jaeger, T.
    Leitao, P.
    Paone, N.
    Castellini, P.
    Turrin, C.
    Schjolberg, I.
    2013 IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2013,
  • [49] Dynamic Reconfiguration for Shipboard Power System Using Multi-agent System
    Momoh, James A.
    Xia, Yan
    Alfred, Keisha C.
    2008 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, VOLS 1-11, 2008, : 1105 - 1108
  • [50] A Multi-Agent Model to Control Robotic Sensor Networks
    Saldana, David
    Ovalle, Demetrio
    Montoya, Alcides
    2012 7TH COLOMBIAN COMPUTING CONGRESS (CCC), 2012,