In flow acoustic characterisation of a 2D active liner with local and non local strategies.

被引:15
作者
Billon, K. [1 ]
De Bono, E. [1 ]
Perez, M. [1 ]
Salze, E. [2 ]
Matten, G. [3 ]
Gillet, M. [3 ]
Ouisse, M. [3 ]
Volery, M. [4 ]
Lissek, H. [4 ]
Mardjono, J. [5 ]
Collet, M. [1 ]
机构
[1] Univ Lyon, Ecole Cent Lyon, LTDS UMR 5513, F-69134 Ecully, France
[2] Univ Lyon, Ecole Cent Lyon, LMFA UMR 5509, F-69134 Ecully, France
[3] Univ Bourgogne Franche Comte, FEMTO ST Inst, Dept Appl Mech, CNRS UFC ENSMM UTB, 24 Rue Epitaphe, F-25000 Besancon, France
[4] Ecole Polytech Fed Lausanne, Signal Proc Lab LTS2, Stn 11, CH-1015 Lausanne, Switzerland
[5] Safran Aircraft Engines, F-75015 Paris, France
基金
欧盟地平线“2020”;
关键词
Active liner; Electroacoustic absorber; Impedance control; Active sound absorption; Lined duct; ELECTROACOUSTIC ABSORBERS; IMPEDANCE CONTROL; SOUND; NOISE; ATTENUATION; RESONATORS; MODES; DUCTS;
D O I
10.1016/j.apacoust.2022.108655
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The design and the grazing flow aeroacoustical characterization of a 2D active liner based on an array of electroacoustic absorbers are presented in this paper. The strategy stands on a pressure-based, current driven digital architecture for impedance control with both local and non local architectures. A wind tunnel test rig is used for the in-flow experimental validation. The stability and robustness of the whole system are investigated as a function of flow velocity showing the efficiency of the proposed approached. The air flow slightly reduces the efficiency while maintaining the adaptability and the stability, and better performances are obtained with the non local control strategy.(c) 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:13
相关论文
共 33 条
[1]   Adaptive Helmholtz resonator based on electroactive polymers: modeling, characterization, and control [J].
Abbad, Ahmed ;
Rabenorosoa, Kanty ;
Ouisse, Morvan ;
Atalla, Noureddine .
SMART MATERIALS AND STRUCTURES, 2018, 27 (10)
[2]  
[Anonymous], [No title captured]
[3]   In-parallel resonators to increase the absorption of subwavelength acoustic absorbers in the mid-frequency range [J].
Auregan, Yves ;
Farooqui, Maaz .
SCIENTIFIC REPORTS, 2019, 9 (1) :11140
[4]  
Bao J, 2007, ADV IND CONTROL, P1, DOI 10.1007/978-1-84628-893-7
[5]   Origami-based auxetic tunable Helmholtz resonator for noise control [J].
Benouhiba, Amine ;
Rougeot, Patrick ;
Andreff, Nicolas ;
Rabenorosoa, Kanty ;
Ouisse, Morvan .
SMART MATERIALS AND STRUCTURES, 2021, 30 (03)
[6]  
Bolton JS, 2007, Bruel & Kjaer Technical Review, P1
[7]   Duct modes damping through an adjustable electroacoustic liner under grazing incidence [J].
Boulandet, R. ;
Lissek, H. ;
Karkar, S. ;
Collet, M. ;
Matten, G. ;
Ouisse, M. ;
Versaevel, M. .
JOURNAL OF SOUND AND VIBRATION, 2018, 426 :19-33
[8]   Toward broadband electroacoustic resonators through optimized feedback control strategies [J].
Boulandet, R. ;
Lissek, H. .
JOURNAL OF SOUND AND VIBRATION, 2014, 333 (20) :4810-4825
[9]   Optimization of electroacoustic absorbers by means of designed experiments [J].
Boulandet, R. ;
Lissek, H. .
APPLIED ACOUSTICS, 2010, 71 (09) :830-842
[10]   Sensorless Electroacoustic Absorbers Through Synthesized Impedance Control for Damping Low-Frequency Modes in Cavities [J].
Boulandet, Romain ;
Rivet, Etienne ;
Lissek, Herve .
ACTA ACUSTICA UNITED WITH ACUSTICA, 2016, 102 (04) :696-704