Representation growth of linear groups

被引:47
作者
Larsen, Michael [1 ]
Lubotzky, Alexander [2 ]
机构
[1] Indiana Univ, Dept Math, Bloomington, IN 47405 USA
[2] Hebrew Univ Jerusalem, Inst Math, IL-91904 Jerusalem, Israel
基金
美国国家科学基金会;
关键词
D O I
10.4171/JEMS/113
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Gamma be a group and r(n)(Gamma) the number of its n-dimensional irreducible complex representations. We define and study the associated representation zeta function Z(Gamma)(s) = Sigma(infinity)(n=1) r(n)(Gamma)n(-s). When Gamma is an arithmetic group satisfying the congruence subgroup property then Z(Gamma)(s) has an "Euler factorization". The "factor at infinity" is sometimes called the "Witten zeta function" counting the rational representations of an algebraic group. For these we determine precisely the abscissa of convergence. The local factor at a finite place counts the finite representations of suitable open subgroups U of the associated simple group G over the associated local field K. Here we show a surprising dichotomy: if G(K) is compact (i.e. G anisotropic over K) the abscissa of convergence goes to 0 when dim G goes to infinity, but for isotropic groups it is bounded away from 0. As a consequence, there is an unconditional positive lower bound for the abscissa for arbitrary finitely generated linear groups. We end with some observations and conjectures regarding the global abscissa.
引用
收藏
页码:351 / 390
页数:40
相关论文
共 38 条
[1]  
[Anonymous], 1991, GEOM FUNCT ANAL, V1, P405
[2]   The proalgebraic completion of rigid groups [J].
Bass, H ;
Lubotzky, AN ;
Magid, AR ;
Mozes, S .
GEOMETRIAE DEDICATA, 2002, 95 (01) :19-58
[3]  
Bass H., 1967, PUBL MATH-PARIS, V33, P59, DOI DOI 10.1007/BF02684586
[4]  
Bosch S., 1990, ERGEB MATH GRENZGEB, V21
[5]  
CORDUNEANU C, 1968, TRACTS PURE APPL MAT, V22
[6]   ARCHIMEDEAN SUPERRIGIDITY AND HYPERBOLIC GEOMETRY [J].
CORLETTE, K .
ANNALS OF MATHEMATICS, 1992, 135 (01) :165-182
[8]  
Dixon J., 1991, LONDON MATH SOC LECT, V157
[9]  
DUSAUTOY MPF, 2006, P ICM MADRID, V2, P131
[10]  
Gromov M., 1992, Inst. Hautes Etudes Sci. Publ. Math, V76, P165, DOI DOI 10.1007/BF02699433