Multilabel Classification via Co-Evolutionary Multilabel Hypernetwork

被引:9
|
作者
Sun, Kai Wei [1 ]
Lee, Chong Ho [1 ]
Wang, Jin [2 ]
机构
[1] Inha Univ, Dept Informat & Commun Engn, Inchon 402751, South Korea
[2] Chongqing Univ Posts & Telecommun, Chongqing Key Lab Computat Intelligence, Chongqing 400065, Peoples R China
关键词
Categorization; multilabel learning; hypernetwork; label correlations; LABEL;
D O I
10.1109/TKDE.2016.2566621
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multilabel classification is prevalent in many real-world applications where data instances may be associated with multiple labels simultaneously. In multilabel classification, exploiting label correlations is an essential but nontrivial task. Most of the existing multilabel learning algorithms are either ineffective or computationally demanding and less scalable in exploiting label correlations. In this paper, we propose a co-evolutionary multilabel hypernetwork (Co-MLHN) as an attempt to exploit label correlations in an effective and efficient way. To this end, we firstly convert the traditional hypernetwork into a multilabel hypernetwork (MLHN) where label correlations are explicitly represented. We then propose a co-evolutionary learning algorithm to learn an integrated classification model for all labels. The proposed Co-MLHN exploits arbitrary order label correlations and has linear computational complexity with respect to the number of labels. Empirical studies on a broad range of multilabel data sets demonstrate that Co-MLHN achieves competitive results against state-of-the-art multilabel learning algorithms, in terms of both classification performance and scalability with respect to the number of labels.
引用
收藏
页码:2438 / 2451
页数:14
相关论文
共 50 条
  • [21] Randomized neural networks for multilabel classification
    Chauhan, Vikas
    Tiwari, Aruna
    APPLIED SOFT COMPUTING, 2022, 115
  • [22] Dataset Sampler for a Multilabel Classification Task
    Kok, Yong En
    Woodward, Simon
    Ozcan, Ender
    Torres Torres, Mercedes
    MOLECULAR INFORMATICS, 2022, 41 (12)
  • [23] Multilabel Text Classification of Scientific Abstract
    Srinivas, T. R.
    Rithvik, A. V. S.
    Mukherjee, Saswati
    COMPUTATIONAL VISION AND BIO-INSPIRED COMPUTING ( ICCVBIC 2021), 2022, 1420 : 335 - 354
  • [24] Graded Multilabel Classification by Pairwise Comparisons
    Brinker, Christian
    Mencia, Eneldo Loza
    Fuernkranz, Johannes
    2014 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2014, : 731 - 736
  • [25] Multilabel classification rule with performance constraints
    Grall-Maes, Edith
    Beauseroy, Pierre
    Bounsiar, Abdenour
    2006 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-13, 2006, : 3235 - 3238
  • [26] A Unified Model for Multilabel Classification and Ranking
    Brinker, Klaus
    Fuernkranz, Johannes
    Huellermeier, Eyke
    ECAI 2006, PROCEEDINGS, 2006, 141 : 489 - +
  • [27] Multilabel Classification with R Package mlr
    Probst, Philipp
    Au, Quay
    Casalicchio, Giuseppe
    Stachl, Clemens
    Bischl, Bernd
    R JOURNAL, 2017, 9 (01): : 352 - 369
  • [28] Improved Multilabel Classification with Neural Networks
    Grodzicki, Rafal
    Mandziuk, Jacek
    Wang, Lipo
    PARALLEL PROBLEM SOLVING FROM NATURE - PPSN X, PROCEEDINGS, 2008, 5199 : 409 - +
  • [29] On Multilabel Classification and Ranking with Bandit Feedback
    Gentile, Claudio
    Orabona, Francesco
    JOURNAL OF MACHINE LEARNING RESEARCH, 2014, 15 : 2451 - 2487
  • [30] Binary relevance efficacy for multilabel classification
    Luaces, Oscar
    Diez, Jorge
    Barranquero, Jose
    Jose del Coz, Juan
    Bahamonde, Antonio
    PROGRESS IN ARTIFICIAL INTELLIGENCE, 2012, 1 (04) : 303 - 313