Multilabel Classification via Co-Evolutionary Multilabel Hypernetwork

被引:9
|
作者
Sun, Kai Wei [1 ]
Lee, Chong Ho [1 ]
Wang, Jin [2 ]
机构
[1] Inha Univ, Dept Informat & Commun Engn, Inchon 402751, South Korea
[2] Chongqing Univ Posts & Telecommun, Chongqing Key Lab Computat Intelligence, Chongqing 400065, Peoples R China
关键词
Categorization; multilabel learning; hypernetwork; label correlations; LABEL;
D O I
10.1109/TKDE.2016.2566621
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multilabel classification is prevalent in many real-world applications where data instances may be associated with multiple labels simultaneously. In multilabel classification, exploiting label correlations is an essential but nontrivial task. Most of the existing multilabel learning algorithms are either ineffective or computationally demanding and less scalable in exploiting label correlations. In this paper, we propose a co-evolutionary multilabel hypernetwork (Co-MLHN) as an attempt to exploit label correlations in an effective and efficient way. To this end, we firstly convert the traditional hypernetwork into a multilabel hypernetwork (MLHN) where label correlations are explicitly represented. We then propose a co-evolutionary learning algorithm to learn an integrated classification model for all labels. The proposed Co-MLHN exploits arbitrary order label correlations and has linear computational complexity with respect to the number of labels. Empirical studies on a broad range of multilabel data sets demonstrate that Co-MLHN achieves competitive results against state-of-the-art multilabel learning algorithms, in terms of both classification performance and scalability with respect to the number of labels.
引用
收藏
页码:2438 / 2451
页数:14
相关论文
共 50 条
  • [1] Evolutionary Multilabel Classification Algorithm Based on Cultural Algorithm
    Wu, Qinghua
    Wu, Bin
    Hu, Chengyu
    Yan, Xuesong
    SYMMETRY-BASEL, 2021, 13 (02): : 1 - 20
  • [2] Multilabel classification via calibrated label ranking
    Johannes Fürnkranz
    Eyke Hüllermeier
    Eneldo Loza Mencía
    Klaus Brinker
    Machine Learning, 2008, 73 : 133 - 153
  • [3] Multilabel Image Classification via Feature/Label Co-Projection
    Wen, Shiping
    Liu, Weiwei
    Yang, Yin
    Zhou, Pan
    Guo, Zhenyuan
    Yan, Zheng
    Chen, Yiran
    Huang, Tingwen
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2021, 51 (11): : 7250 - 7259
  • [4] Multilabel classification via calibrated label ranking
    Fuernkranz, Johannes
    Huellermeier, Eyke
    Mencia, Eneldo Loza
    Brinker, Klaus
    MACHINE LEARNING, 2008, 73 (02) : 133 - 153
  • [5] Collaborative Multilabel Classification
    Zhu, Yunzhang
    Shen, Xiaotong
    Jiang, Hui
    Wong, Wing Hung
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2023, 118 (542) : 913 - 924
  • [6] Consistent Multilabel Classification
    Koyejo, Oluwasanmi
    Natarajan, Nagarajan
    Ravikumar, Pradeep
    Dhillon, Inderjit S.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [7] Multilabel Consensus Classification
    Xie, Sihong
    Kong, Xiangnan
    Gao, Jing
    Fan, Wei
    Yu, Philip S.
    2013 IEEE 13TH INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2013, : 1241 - 1246
  • [8] Adapting non-hierarchical multilabel classification methods for hierarchical multilabel classification
    Cerri, Ricardo
    de Carvalho, Andre Carlos P. L. F.
    Freitas, Alex A.
    INTELLIGENT DATA ANALYSIS, 2011, 15 (06) : 861 - 887
  • [9] Hierarchical Multilabel Text Classification via Multitask Learning
    Yu, Yipeng
    Sun, Zixun
    Sun, Chi
    Liu, Wenqiang
    2021 IEEE 33RD INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2021), 2021, : 1138 - 1143
  • [10] Efficient Spoken Language Recognition via Multilabel Classification
    Nieto, Oriol
    Jin, Zeyu
    Dernoncourt, Franck
    Salamon, Justin
    INTERSPEECH 2023, 2023, : 506 - 510