Quantum Measurement Cooling

被引:123
作者
Buffoni, Lorenzo [1 ,2 ]
Solfanelli, Andrea [2 ]
Verrucchi, Paola [2 ,3 ,4 ]
Cuccoli, Alessandro [2 ,4 ]
Campisi, Michele [2 ,4 ,5 ]
机构
[1] Univ Florence, Dept Informat Engn, Via S Marta 3, I-50139 Florence, Italy
[2] Univ Florence, Dept Phys & Astron, Via G Sansone 1, I-50019 Sesto Fiorentino, FI, Italy
[3] CNR, Ist Sistemi Complessi, Via Madonna Piano 10, I-50019 Sesto Fiorentino, FI, Italy
[4] INFN, Sez Firenze, Via G Sansone 1, I-50019 Sesto Fiorentino, FI, Italy
[5] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA
基金
美国国家科学基金会;
关键词
36;
D O I
10.1103/PhysRevLett.122.070603
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Invasiveness of quantum measurements is a genuinely quantum mechanical feature that is not necessarily detrimental: Here we show how quantum measurements can be used to fuel a cooling engine. We illustrate quantum measurement cooling (QMC) by means of a prototypical two-stroke two-qubit engine which interacts with a measurement apparatus and two heat reservoirs at different temperatures. We show that feedback control is not necessary for operation while entanglement must be present in the measurement projectors. We quantify the probability that QMC occurs when the measurement basis is chosen randomly, and find that it can be very large as compared to the probability of extracting energy (heat engine operation), while remaining always smaller than the most useless operation, namely, dumping heat in both baths. These results show that QMC can be very robust to experimental noise. A possible low-temperature solid-state implementation that integrates circuit QED technology with circuit quantum thermodynamics technology is presented.
引用
收藏
页数:5
相关论文
共 35 条
  • [1] Maximal work extraction from finite quantum systems
    Allahverdyan, AE
    Balian, R
    Nieuwenhuizen, TIM
    [J]. EUROPHYSICS LETTERS, 2004, 67 (04): : 565 - 571
  • [2] Work extremum principle: Structure and function of quantum heat engines
    Allahverdyan, Armen E.
    Johal, Ramandeep S.
    Mahler, Guenter
    [J]. PHYSICAL REVIEW E, 2008, 77 (04):
  • [3] PERMUTATION MATRICES WHOSE CONVEX COMBINATIONS ARE ORTHOSTOCHASTIC
    AUYEUNG, YH
    CHENG, CM
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1991, 150 : 243 - 253
  • [4] Bengtsson I., ARXIVQUANTPH0403088
  • [5] Controlling heat and particle currents in nanodevices by quantum observation
    Biele, Robert
    Rodriguez-Rosario, Cesar A.
    Frauenheim, Thomas
    Rubio, Angel
    [J]. NPJ QUANTUM MATERIALS, 2017, 2
  • [6] Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation
    Blais, A
    Huang, RS
    Wallraff, A
    Girvin, SM
    Schoelkopf, RJ
    [J]. PHYSICAL REVIEW A, 2004, 69 (06): : 062320 - 1
  • [7] Busch P, 2016, THEOR MATH PHYS SER, P1, DOI 10.1007/978-3-319-43389-9
  • [8] Feedback-controlled heat transport in quantum devices: theory and solid-state experimental proposal
    Campisi, Michele
    Pekola, Jukka
    Fazio, Rosario
    [J]. NEW JOURNAL OF PHYSICS, 2017, 19
  • [9] Dissipation, correlation and lags in heat engines
    Campisi, Michele
    Fazio, Rosario
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (34)
  • [10] Nonequilibrium fluctuations in quantum heat engines: theory, example, and possible solid state experiments
    Campisi, Michele
    Pekola, Jukka
    Fazio, Rosario
    [J]. NEW JOURNAL OF PHYSICS, 2015, 17 : 1 - 14