Interior penalty discontinuous Galerkin method for Maxwell's equations:: optimal L2-norm error estimates

被引:35
|
作者
Grote, Marcus J. [2 ]
Schneebeli, Anna [2 ]
Schoetzau, Dominik [1 ]
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC V6T IZ2, Canada
[2] Univ Basel, Dept Math, CH-4051 Basel, Switzerland
基金
加拿大自然科学与工程研究理事会;
关键词
Maxwell's equations; discontinuous Galerkin methods; a priori error estimates;
D O I
10.1093/imanum/drm038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the symmetric, interior penalty discontinuous Galerkin ( DG) method for the time-dependent Maxwell's equations in second-order form. In Grote et al. ( 2007, J. Comput. Appl. Math., 204, 375 386), optimal a priori estimates in the DG energy norm were derived, either for smooth solutions on arbitrary meshes or for low-regularity ( singular) solutions on conforming, affine meshes. Here, we show that the DG methods are also optimally convergent in the L-2-norm, on tetrahedral meshes and for smooth material coefficients. The theoretical convergence rates are validated by a series of numerical experiments in two-space dimensions, which also illustrate the usefulness of the interior penalty DG method for time-dependent computational electromagnetics.
引用
收藏
页码:440 / 468
页数:29
相关论文
共 48 条
  • [21] GALERKIN SPECTRAL METHODS FOR AN ELLIPTIC OPTIMAL CONTROL PROBLEM WITH L2-NORM STATE CONSTRAINT
    Lin, Xiuxiu
    Chen, Yanping
    Huang, Yunqing
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2021, 19 (05) : 1247 - 1267
  • [22] Causal-Path Local Time-Stepping in the discontinuous Galerkin method for Maxwell's equations
    Angulo, L. D.
    Alvarez, J.
    Teixeira, F. L.
    Pantoja, M. F.
    Garcia, S. G.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 256 : 678 - 695
  • [23] Optimal non-dissipative discontinuous Galerkin methods for Maxwell's equations in Drude metamaterials
    Li, Jichun
    Shi, Cengke
    Shu, Chi-Wang
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 73 (08) : 1760 - 1780
  • [24] QUASI-OPTIMAL A PRIORI INTERFACE ERROR BOUNDS AND A POSTERIORI ESTIMATES FOR THE INTERIOR PENALTY METHOD
    Waluga, Christian
    Wohlmuth, Barbara
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (06) : 3259 - 3279
  • [25] Homogenized discontinuous Galerkin method for Maxwell's equations in periodic structured dispersive media
    Li, Jichun
    Waters, Jiajia
    RECENT ADVANCES IN SCIENTIFIC COMPUTING AND APPLICATIONS, 2013, 586 : 247 - 255
  • [26] An Explicit Nodal Space-Time Discontinuous Galerkin Method for Maxwell's Equations
    Angulo, L. D.
    Alvarez, Jesus
    Fernandez Pantoja, Mario
    Gonzalez Garcia, Salvador
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2014, 24 (12) : 827 - 829
  • [27] The Discontinuous Galerkin Time-Domain method for Maxwell's equations with anisotropic materials
    Koenig, Michael
    Busch, Kurt
    Niegemann, Jens
    PHOTONICS AND NANOSTRUCTURES-FUNDAMENTALS AND APPLICATIONS, 2010, 8 (04) : 303 - 309
  • [28] The use of hybrid meshes to improve the efficiency of a discontinuous Galerkin method for the solution of Maxwell's equations
    Sevilla, Ruben
    Hassan, Oubay
    Morgan, Kenneth
    COMPUTERS & STRUCTURES, 2014, 137 : 2 - 13
  • [29] A Nodal Continuous-Discontinuous Galerkin Time-Domain Method for Maxwell's Equations
    Diaz Angulo, Luis
    Alvarez, Jesus
    Teixeira, Fernando L.
    Fernandez Pantoja, M.
    Garcia, Salvador G.
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2015, 63 (10) : 3081 - 3093
  • [30] Abstract Nonconforming Error Estimates and Application to Boundary Penalty Methods for Diffusion Equations and Time-Harmonic Maxwell's Equations
    Ern, Alexandre
    Guermond, Jean-Luc
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2018, 18 (03) : 451 - 475