A Novel Method of Bearing Fault Diagnosis in Time-Frequency Graphs Using InceptionResnet and Deformable Convolution Networks

被引:18
作者
Li, Shaobo [1 ,2 ]
Yang, Wangli [1 ]
Zhang, Ansi [2 ]
Liu, Huibin [2 ]
Huang, Jinyuan [1 ]
Li, Chuanjiang [2 ]
Hu, Jianjun [1 ,3 ]
机构
[1] Guizhou Univ, Sch Mech Engn, Guiyang 550025, Peoples R China
[2] Guizhou Univ, Key Lab Adv Mfg Technol, Minist Educ, Guiyang 550025, Peoples R China
[3] Univ South Carolina, Dept Comp Sci & Engn, Columbia, SC 29208 USA
基金
中国国家自然科学基金;
关键词
Rolling element bearing; fault diagnosis; InceptionResnetV2; deformable convolution; time-frequency graph; NEURAL-NETWORK; DEEP;
D O I
10.1109/ACCESS.2020.2995198
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Bearing fault diagnosis has attracted increasing attention due to its importance in the health status of rotating machinery. The data-driven models based on deep learning (DL) have become more and more intelligent in the field of fault diagnosis, and among them convolutional neural network (CNN) has been widely used in recent researches. However, traditional CNN is not easy to capture right fault features due to their fixed geometric structures, especially under complex working conditions in fault diagnosis. To address these challenges, we propose a novel model by combining InceptionResnetV2 with Deformable Convolution Networks, named DeIN. We replace the basic form of convolution with deformable convolution in specific layers, and a main classifier and an auxiliary classifier are designed to output the classification result of our proposed model, to adapt to the non-rigid characters and larger receptive field in time-frequency graph (TFG). Experimentally, the one-dimensional signals are transformed into TFGs and as input of the proposed model, and this aims to find useful features during the training process. To verify the generalization ability of the proposed model, we apply a set of cross-over tests based on two popular datasets, and our model achieved 99.87% and 94.52% highest-precision fault classification results comparing with other state-of-the-art CNN models.
引用
收藏
页码:92743 / 92753
页数:11
相关论文
共 50 条
  • [41] Research on Fault Diagnosis Method Based on Empirical Mode Decomposition & Time-Frequency Reassignment
    Hao, Zhihua
    Ma, Zhuang
    Zhou, Haomiao
    MATERIALS SCIENCE AND INFORMATION TECHNOLOGY, PTS 1-8, 2012, 433-440 : 6256 - 6261
  • [42] Intelligent fault diagnosis of rolling bearing based on EMDPWVD time-frequency images and improved ViT network
    Fan, Hongwei
    Ma, Ningge
    Ma, Jiateng
    Chen, Buran
    Cao, Xiangang
    Zhang, Xuhui
    Zhendong yu Chongji/Journal of Vibration and Shock, 2024, 43 (11): : 246 - 254
  • [43] Rolling Bearing Fault Diagnosis Based on Time-frequency Transform-assisted CNN: A Comparison Study
    Song, Baoye
    Liu, Yiyan
    Lu, Peng
    Bai, Xingzhen
    2023 IEEE 12TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE, DDCLS, 2023, : 1273 - 1279
  • [44] Convolutional neural network based rolling-element bearing fault diagnosis for naturally occurring and progressing defects using time-frequency domain features
    Pandhare, Vibhor
    Singh, Jaskaran
    Lee, Jay
    2019 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-PARIS), 2019, : 320 - 326
  • [45] Time-frequency Transformer with shifted windows for journal bearing-rotor systems fault diagnosis under multiple working conditions
    Chen, Feiyu
    Wang, Xiaojing
    Zhu, Yan
    Yuan, Weimin
    Hu, Yusheng
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (08)
  • [46] Multimodal time-frequency graph fusion based fault diagnosis
    Yang, Hongyan
    Yao, Qi
    2024 IEEE 19TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, ICIEA 2024, 2024,
  • [47] Mechanical fault diagnosis based on a new time-frequency distribution
    Wang, Xinqing
    Ma, Ruiheng
    Wang, Yaohua
    Yan, Jun
    Cai, Ligen
    Zeng, Yonghua
    Wang, Yang
    Jixie Gongcheng Xuebao/Chinese Journal of Mechanical Engineering, 2003, 39 (07): : 150 - 153
  • [48] Study on the fault diagnosis of gearboxes based on time-frequency distribution
    Ren, GQ
    Li, GZ
    Gao, JW
    ICEMI'2003: PROCEEDINGS OF THE SIXTH INTERNATIONAL CONFERENCE ON ELECTRONIC MEASUREMENT & INSTRUMENTS, VOLS 1-3, 2003, : 1655 - 1658
  • [49] Bearing fault diagnosis method based on the generalized S transform time-frequency spectrum de-noised by singular value decomposition
    Cai, Jianhua
    Xiao, Yongliang
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2019, 233 (07) : 2467 - 2477
  • [50] A novel Roller Bearing Fault Diagnosis Method based on the Wavelet Extreme Learning Machine
    Xin Yu
    Li Shunming
    Wang Jingrui
    2017 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-HARBIN), 2017, : 504 - 509