A Novel Method of Bearing Fault Diagnosis in Time-Frequency Graphs Using InceptionResnet and Deformable Convolution Networks

被引:18
|
作者
Li, Shaobo [1 ,2 ]
Yang, Wangli [1 ]
Zhang, Ansi [2 ]
Liu, Huibin [2 ]
Huang, Jinyuan [1 ]
Li, Chuanjiang [2 ]
Hu, Jianjun [1 ,3 ]
机构
[1] Guizhou Univ, Sch Mech Engn, Guiyang 550025, Peoples R China
[2] Guizhou Univ, Key Lab Adv Mfg Technol, Minist Educ, Guiyang 550025, Peoples R China
[3] Univ South Carolina, Dept Comp Sci & Engn, Columbia, SC 29208 USA
基金
中国国家自然科学基金;
关键词
Rolling element bearing; fault diagnosis; InceptionResnetV2; deformable convolution; time-frequency graph; NEURAL-NETWORK; DEEP;
D O I
10.1109/ACCESS.2020.2995198
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Bearing fault diagnosis has attracted increasing attention due to its importance in the health status of rotating machinery. The data-driven models based on deep learning (DL) have become more and more intelligent in the field of fault diagnosis, and among them convolutional neural network (CNN) has been widely used in recent researches. However, traditional CNN is not easy to capture right fault features due to their fixed geometric structures, especially under complex working conditions in fault diagnosis. To address these challenges, we propose a novel model by combining InceptionResnetV2 with Deformable Convolution Networks, named DeIN. We replace the basic form of convolution with deformable convolution in specific layers, and a main classifier and an auxiliary classifier are designed to output the classification result of our proposed model, to adapt to the non-rigid characters and larger receptive field in time-frequency graph (TFG). Experimentally, the one-dimensional signals are transformed into TFGs and as input of the proposed model, and this aims to find useful features during the training process. To verify the generalization ability of the proposed model, we apply a set of cross-over tests based on two popular datasets, and our model achieved 99.87% and 94.52% highest-precision fault classification results comparing with other state-of-the-art CNN models.
引用
收藏
页码:92743 / 92753
页数:11
相关论文
共 50 条
  • [31] A Bearing Fault Diagnosis Method Using Deformable Periodic Potential System
    Xu H.
    Zhang G.
    Zhang T.
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2020, 54 (08): : 77 - 83
  • [32] Rolling Bearing Fault Diagnosis Based on Time-Frequency Compression Fusion and Residual Time-Frequency Mixed Attention Network
    Sun, Guodong
    Yang, Xiong
    Xiong, Chenyun
    Hu, Ye
    Liu, Moyun
    APPLIED SCIENCES-BASEL, 2022, 12 (10):
  • [33] Noise-resistant time-frequency analysis method and its application in fault diagnosis of rolling bearing
    The State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai
    200240, China
    不详
    100161, China
    不详
    200090, China
    不详
    046012, China
    Jixie Gongcheng Xuebao, 1 (90-96):
  • [34] Unbalanced Data-Based Fault Diagnosis Method of Bearing Utilizing Time-Frequency DCGAN Processing
    Fei, Sheng-Wei
    Liu, Ying-Zhe
    MECHANIKA, 2024, 30 (04): : 371 - 376
  • [35] Fault diagnosis of rolling bearing' compound faults based on improved time-frequency spectrum analysis method
    Wang H.
    Xiang G.
    Guo Z.
    Gong X.
    Du W.
    1698, Beijing University of Aeronautics and Astronautics (BUAA) (32): : 1698 - 1703
  • [36] A wind turbine bearing fault diagnosis method based on fused depth features in time-frequency domain
    Tang, Zhenhao
    Wang, Mengjiao
    Ouyang, Tinghui
    Che, Fei
    ENERGY REPORTS, 2022, 8 : 12727 - 12739
  • [37] Fault Detection of Gearbox Using Time-Frequency Method
    Widodo, A.
    Satrijo, Dj.
    Prahasto, T.
    Haryanto, I.
    7TH INTERNATIONAL CONFERENCE ON MECHANICAL AND MANUFACTURING ENGINEERING (ICME'16), 2017, 1831
  • [38] Study on Fault Diagnosis of Rolling Bearing Based on Time-Frequency Generalized Dimension
    Yuan, Yu
    Zhao, Xing
    Fei, Jiyou
    Zhao, Yulong
    Wang, Jiahui
    SHOCK AND VIBRATION, 2015, 2015
  • [39] The application of time-frequency reconstruction and correlation matching for rolling bearing fault diagnosis
    Xu, Jian
    Tong, Shuiguang
    Cong, Feiyun
    Zhang, Yidong
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2015, 229 (17) : 3291 - 3295
  • [40] Fault Diagnosis Using New Time-frequency Transform Technique
    Duan, Chen-Dong
    Xue, Zhou-Zhou
    Qi, Xia
    Geng, Bo-Wang
    INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING AND MECHANICAL AUTOMATION (ICEEMA 2015), 2015, : 252 - 258