A Novel Method of Bearing Fault Diagnosis in Time-Frequency Graphs Using InceptionResnet and Deformable Convolution Networks

被引:18
|
作者
Li, Shaobo [1 ,2 ]
Yang, Wangli [1 ]
Zhang, Ansi [2 ]
Liu, Huibin [2 ]
Huang, Jinyuan [1 ]
Li, Chuanjiang [2 ]
Hu, Jianjun [1 ,3 ]
机构
[1] Guizhou Univ, Sch Mech Engn, Guiyang 550025, Peoples R China
[2] Guizhou Univ, Key Lab Adv Mfg Technol, Minist Educ, Guiyang 550025, Peoples R China
[3] Univ South Carolina, Dept Comp Sci & Engn, Columbia, SC 29208 USA
基金
中国国家自然科学基金;
关键词
Rolling element bearing; fault diagnosis; InceptionResnetV2; deformable convolution; time-frequency graph; NEURAL-NETWORK; DEEP;
D O I
10.1109/ACCESS.2020.2995198
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Bearing fault diagnosis has attracted increasing attention due to its importance in the health status of rotating machinery. The data-driven models based on deep learning (DL) have become more and more intelligent in the field of fault diagnosis, and among them convolutional neural network (CNN) has been widely used in recent researches. However, traditional CNN is not easy to capture right fault features due to their fixed geometric structures, especially under complex working conditions in fault diagnosis. To address these challenges, we propose a novel model by combining InceptionResnetV2 with Deformable Convolution Networks, named DeIN. We replace the basic form of convolution with deformable convolution in specific layers, and a main classifier and an auxiliary classifier are designed to output the classification result of our proposed model, to adapt to the non-rigid characters and larger receptive field in time-frequency graph (TFG). Experimentally, the one-dimensional signals are transformed into TFGs and as input of the proposed model, and this aims to find useful features during the training process. To verify the generalization ability of the proposed model, we apply a set of cross-over tests based on two popular datasets, and our model achieved 99.87% and 94.52% highest-precision fault classification results comparing with other state-of-the-art CNN models.
引用
收藏
页码:92743 / 92753
页数:11
相关论文
共 50 条
  • [21] Multiscale Time-Frequency Sparse Transformer Based on Partly Interpretable Method for Bearing Fault Diagnosis
    Che, Shouquan
    Lu, Jianfeng
    Bao, Congwang
    Zhang, Caihong
    Liu, Yongzhi
    SHOCK AND VIBRATION, 2023, 2023
  • [22] A time-frequency spectral amplitude modulation method and its applications in rolling bearing fault diagnosis
    Jiang, Zuhua
    Zhang, Kun
    Xiang, Ling
    Yu, Gang
    Xu, Yonggang
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2023, 185
  • [23] A Hybrid Time-Frequency Analysis Method for Railway Rolling-Element Bearing Fault Diagnosis
    Cheng, Yao
    Zou, Dong
    Zhang, Weihua
    Wang, Zhiwei
    JOURNAL OF SENSORS, 2019, 2019
  • [24] Industrial Bearing Fault Detection Using Time-Frequency Analysis
    Bella, Yasmina
    Oulmane, Abdelhak
    Mostefai, Mohammed
    ENGINEERING TECHNOLOGY & APPLIED SCIENCE RESEARCH, 2018, 8 (04) : 3294 - 3299
  • [25] Rolling bearing fault diagnosis method using time-frequency information integration and multi-scale TransFusion network
    Wang, Zekun
    Xu, Zifei
    Cai, Chang
    Wang, Xiaodong
    Xu, Jianzhong
    Shi, Kezhong
    Zhong, Xiaohui
    Liao, Zhiqiang
    Li, Qing 'an
    KNOWLEDGE-BASED SYSTEMS, 2024, 284
  • [26] Fault Diagnosis Based on Space Mapping and Deformable Convolution Networks
    Zhao, Yunji
    Zhou, Menglin
    Xu, Xiaozhuo
    Zhang, Nannan
    Zhang, Haibo
    IEEE ACCESS, 2020, 8 (08): : 212599 - 212607
  • [27] Motor Bearing Fault Diagnosis Based on Current Signal Using Time-Frequency Channel Attention
    Wang, Zhiqiang
    Guan, Chao
    Shi, Shangru
    Zhang, Guozheng
    Gu, Xin
    WORLD ELECTRIC VEHICLE JOURNAL, 2024, 15 (07):
  • [28] A method of fault detection and diagnosis based on time-frequency analysis
    Liang, YingBo
    Zhang, LiHong
    Li, Jin
    MECHATRONICS AND INTELLIGENT MATERIALS II, PTS 1-6, 2012, 490-495 : 1407 - 1410
  • [29] FTGAN: A Novel GAN-Based Data Augmentation Method Coupled Time-Frequency Domain for Imbalanced Bearing Fault Diagnosis
    Wang, Haoyu
    Li, Peng
    Lang, Xun
    Tao, Dapeng
    Ma, Jun
    Li, Xiang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [30] FTGAN: A Novel GAN-Based Data Augmentation Method Coupled Time-Frequency Domain for Imbalanced Bearing Fault Diagnosis
    Wang, Haoyu
    Li, Peng
    Lang, Xun
    Tao, Dapeng
    Ma, Jun
    Li, Xiang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72