A two-step strategy for constructing stable gel polymer electrolyte interfaces for long-life cycle lithium metal batteries

被引:15
作者
Wang, Qiujun [1 ]
Zhang, Pin [1 ]
Zhu, Weiqi [1 ]
Zhang, Di [1 ]
Li, Zhaojin [1 ]
Wang, Huan [1 ]
Sun, Huilan [1 ]
Wang, Bo [1 ]
Fan, Li-Zhen [2 ]
机构
[1] Hebei Univ Sci & Technol, Sch Mat Sci & Engn, Hebei Key Lab Flexible Funct Mat, Shijiazhuang 050018, Peoples R China
[2] Univ Sci & Technol Beijing, Inst Adv Mat & Technol, Beijing Adv Innovat Ctr Mat Genome Engn, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Gel polymer electrolyte; Pre-lithiation; Lithium -metal batteries; In -situ polymerization; SOLID-ELECTROLYTE; COMPOSITE ELECTROLYTES; PERFORMANCE; NETWORK; CARBONATE; MEMBRANE;
D O I
10.1016/j.jmat.2022.02.009
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Due to the high reactivity between the lithium metal and traditional organic liquid electrolyte, the re-action of lithium metal electrode is usually uneven and there are also unexpected side reactions. Therefore, construction of a stable solid electrolyte interface (SEI) is highly essential to improve the performance of lithium metal anode. Herein, a sandwich-like gel polymer electrolyte (GPE) is accurately prepared by in-situ polymerization of Polyacrylonitrile (PAN) nanofiber membrane with trihydrox-ymethylpropyl trimethylacrylate (TMPTMA) and 1,6-hexanediol diacrylate (HDDA). The resulting GPE with a tightly cross-linked gel skeleton exhibits high ionic conductivity and electrochemical window of 5.6 V versus Li/Li+. In particular, the pretreatment of Li metal anode can improve the interfacial wetta-bility, and the synergy of the chemically pretreated Li metal anode surface and the GPE can electro-chemically in situ generate SEI with compositionally stable and fluorine-rich inorganic components. Owing to these unique advantages, the interfacial compatibility between the GPE and lithium metal is greatly improved. Meanwhile, the formed SEI can inhibit the formation of lithium dendrites, and decomposition of GPE would be alleviated. The assembled Li-FEC|GPE|LiFePO4 full cell shows a high initial discharge capacity of 157.1 mA h g(-1), and maintains a capacity retention of 92.3% after 100 cycles at 0.2C.(c) 2022 The Chinese Ceramic Society. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:1048 / 1057
页数:10
相关论文
共 49 条
[11]   In-situ plasticized polymer electrolyte with double-network for flexible solid-state lithium-metal batteries [J].
Duan, Hui ;
Yin, Ya-Xia ;
Zeng, Xian-Xiang ;
Li, Jin-Yi ;
Shi, Ji-Lei ;
Shi, Yang ;
Wen, Rui ;
Guo, Yu-Guo ;
Wan, Li-Jun .
ENERGY STORAGE MATERIALS, 2018, 10 :85-91
[12]   A quantum-chemical study of Li+•••C=O interactions in polyester-based polymer electrolytes [J].
Eilmes, Andrzej .
SOLID STATE IONICS, 2008, 179 (13-14) :458-464
[13]   Tailoring inorganic-polymer composites for the mass production of solid-state batteries [J].
Fan, Li-Zhen ;
He, Hongcai ;
Nan, Ce-Wen .
NATURE REVIEWS MATERIALS, 2021, 6 (11) :1003-1019
[14]   UV-Initiated Soft-Tough Multifunctional Gel Polymer Electrolyte Achieves Stable-Cycling Li-Metal Battery [J].
Fan, Wei ;
Zhang, Xiuling ;
Li, Congju ;
Zhao, Shuyu ;
Wang, Jing .
ACS APPLIED ENERGY MATERIALS, 2019, 2 (06) :4513-4520
[15]   Effect of propylene carbonate as a plasticizer in high molecular weight PEO-LiCF3SO3 electrolytes [J].
Frech, R ;
Chintapalli, S .
SOLID STATE IONICS, 1996, 85 (1-4) :61-66
[16]   An All-Fluorinated Ester Electrolyte for Stable High-Voltage Li Metal Batteries Capable of Ultra-Low-Temperature Operation [J].
Holoubek, John ;
Yu, Mingyu ;
Yu, Sicen ;
Li, Minqian ;
Wu, Zhaohui ;
Xia, Dawei ;
Bhaladhare, Pranjal ;
Gonzalez, Matthew S. ;
Pascal, Tod A. ;
Liu, Ping ;
Chen, Zheng .
ACS ENERGY LETTERS, 2020, 5 (05) :1438-1447
[17]   Review-Polymer/Ceramic Interface Barriers: The Fundamental Challenge for Advancing Composite Solid Electrolytes for Li-Ion Batteries [J].
Horowitz, Yonatan ;
Lifshitz, Moran ;
Greenbaum, Anna ;
Feldman, Yuri ;
Greenbaum, Steve ;
Sokolov, Alexei P. ;
Golodnitsky, Diana .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (16)
[18]   Porous film host-derived 3D composite polymer electrolyte for high-voltage solid state lithium batteries [J].
Hu, Jiangkui ;
He, Pingge ;
Zhang, Bochen ;
Wang, Bingyao ;
Fan, Li-Zhen .
ENERGY STORAGE MATERIALS, 2020, 26 :283-289
[19]   Design of a mixed conductive garnet/Li interface for dendrite-free solid lithium metal batteries [J].
Huo, Hanyu ;
Chen, Yue ;
Li, Ruying ;
Zhao, Ning ;
Luo, Jing ;
da Silva, Joao Gustavo Pereira ;
Muecke, Robert ;
Kaghazchi, Payam ;
Guo, Xiangxin ;
Sun, Xueliang .
ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (01) :127-134
[20]   Robust Swing-Structured Triboelectric Nanogenerator for Efficient Blue Energy Harvesting [J].
Jiang, Tao ;
Pang, Hao ;
An, Jie ;
Lu, Pinjing ;
Feng, Yawei ;
Liang, Xi ;
Zhong, Wei ;
Wang, Zhong Lin .
ADVANCED ENERGY MATERIALS, 2020, 10 (23)