TAGA: A Transfer-based Black-box Adversarial Attack with Genetic Algorithms

被引:0
作者
Huang, Liang-Jung [1 ]
Yu, Tian-Li [1 ]
机构
[1] Natl Taiwan Univ, Taiwan Evolutionary Intelligence Lab, Dept Elect Engn, Taipei, Taiwan
来源
PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'22) | 2022年
关键词
Deep Learning; Neural Networks; Adversarial Attacks; Genetic; Algorithms;
D O I
10.1145/3512290.3528699
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Deep learning has been widely adopted in many real-world applications, especially in image classification. However, researches have shown that minor distortions imperceptible to humans may mislead classifiers. One way to improve the robustness is using adversarial attacks to obtain adversarial examples and re-training the classifier with those images. However, the connections between attacks and application scenarios are rarely discussed. This paper proposes a novel black-box adversarial attack that is specifically designed for real-world application scenarios: The transfer-based black-box adversarial attack with genetic algorithms (TAGA). TAGA adopts a genetic algorithm to generate the adversarial examples and reduces the ensuing query costs with a surrogate model based on the transferability of adversarial attacks. Empirical results show that perturbing embeddings in the latent space helps the attack algorithm quickly obtain adversarial examples and that the surrogate fitness function reduces the number of function evaluations. Compared with several state-of-the-art attacks, TAGA improves the classifiers more under the application scenario in terms of the summation of natural and defense accuracy.
引用
收藏
页码:712 / 720
页数:9
相关论文
共 34 条
[1]   A High-Quality Denoising Dataset for Smartphone Cameras [J].
Abdelhamed, Abdelrahman ;
Lin, Stephen ;
Brown, Michael S. .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :1692-1700
[2]   GenAttack: Practical Black-box Attacks with Gradient-Free Optimization [J].
Alzantot, Moustafa ;
Sharma, Yash ;
Chakraborty, Supriyo ;
Zhang, Huan ;
Hsieh, Cho-Jui ;
Srivastava, Mani B. .
PROCEEDINGS OF THE 2019 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'19), 2019, :1111-1119
[3]   Square Attack: A Query-Efficient Black-Box Adversarial Attack via Random Search [J].
Andriushchenko, Maksym ;
Croce, Francesco ;
Flammarion, Nicolas ;
Hein, Matthias .
COMPUTER VISION - ECCV 2020, PT XXIII, 2020, 12368 :484-501
[4]  
[Anonymous], 2009, CIFAR-100 Dataset
[5]  
[Anonymous], 2016, arXiv
[6]  
[Anonymous], P INT C LEARN REPR
[7]  
Brown Tom B., 2018, arXiv
[8]   Towards Evaluating the Robustness of Neural Networks [J].
Carlini, Nicholas ;
Wagner, David .
2017 IEEE SYMPOSIUM ON SECURITY AND PRIVACY (SP), 2017, :39-57
[9]   POBA-GA: Perturbation optimized black-box adversarial attacks via genetic algorithm [J].
Chen, Jinyin ;
Su, Mengmeng ;
Shen, Shijing ;
Xiong, Hui ;
Zheng, Haibin .
COMPUTERS & SECURITY, 2019, 85 :89-106
[10]  
Chen PY, 2017, PROCEEDINGS OF THE 10TH ACM WORKSHOP ON ARTIFICIAL INTELLIGENCE AND SECURITY, AISEC 2017, P15, DOI 10.1145/3128572.3140448