Prototyping phase of the high heat flux scraper element of Wendelstein 7-X

被引:7
作者
Boscary, J. [1 ]
Greuner, H. [1 ]
Ehrke, G. [3 ]
Boeswirth, B. [1 ]
Wang, Z. [1 ]
Clark, E. [4 ]
Lumsdaine, A. [2 ]
Tretter, J. [1 ]
McGinnis, D. [2 ]
Lore, J.
Ekici, K. [4 ]
机构
[1] Max Planck Inst Plasma Phys, Garching, Germany
[2] USA Natl Lab, Oak Ridge Natl Lab, Oak Ridge, TN USA
[3] Max Planck Inst Plasma Phys, Greifswald, Germany
[4] Univ Tennessee, Knoxville, TN USA
基金
欧盟地平线“2020”;
关键词
Stellarator; Wendelstein; 7-X; Plasma facing component; Divertor; Monoblock; TARGET ELEMENTS; DESIGN;
D O I
10.1016/j.fusengdes.2016.02.001
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The water-cooled high heat flux scraper element aims to reduce excessive heat loads on the target element ends of the actively cooled divertor of Wendelstein 7-X. Its purpose is to intercept some of the plasma fluxes both upstream and downstream before they reach the divertor surface. The scraper element has 24 identical plasma facing components (PFCs) divided into 6 modules. One module has 4 PFCs hydraulically connected in series by 2 water boxes. A PFC, 247 mm long and 28 mm wide, has 13 monoblocks made of CFC NB31 bonded by hot isostatic pressing onto a CuCrZr cooling tube equipped with a copper twisted tape. 4 full-scale prototypes of PFCs have been successfully tested in the GLADIS facility up to 20 MW/m(2). The difference observed between measured and calculated surface temperatures is probably due to the inhomogeneity of CFC properties. The design of the water box prototypes has been detailed to allow the junction between the cooling pipe of the PFCs and the water boxes by internal orbital welding. The prototypes are presently under fabrication. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:773 / 776
页数:4
相关论文
共 50 条
[41]   Engineering design for the magnetic diagnostics of Wendelstein 7-X [J].
Endler, M. ;
Brucker, B. ;
Bykov, V. ;
Cardella, A. ;
Cads, A. ;
Dobmeier, F. ;
Dudek, A. ;
Fellinger, J. ;
Geiger, J. ;
Grosser, K. ;
Grulke, O. ;
Hartmann, D. ;
Hathiramani, D. ;
Hoechel, K. ;
Koeppen, M. ;
Laube, R. ;
Neuner, U. ;
Peng, X. ;
Rahbarnia, K. ;
Rummel, K. ;
Sieber, T. ;
Thiel, S. ;
Vorkoeper, A. ;
Werner, A. ;
Windisch, T. ;
Ye, M. Y. .
FUSION ENGINEERING AND DESIGN, 2015, 100 :468-494
[42]   Tungsten based divertor development for Wendelstein 7-X [J].
Fellinger, Joris ;
Richou, M. ;
Ehrke, G. ;
Endler, M. ;
Kunkel, F. ;
Naujoks, D. ;
Kremeyer, Th. ;
Menzel-Barbara, A. ;
Sieber, Th. ;
Lobsien, J-F. ;
Neu, R. ;
Tretter, J. ;
Wang, Z. ;
You, J-H. ;
Greuner, H. ;
Hunger, K. ;
Junghanns, P. ;
Schneider, O. ;
Wirtz, M. ;
Loewenhoff, Th. ;
Houben, A. ;
Litnovsky, A. ;
Fraysinnes, P-E. ;
Emonot, P. ;
Roccella, S. ;
Widlund, O. ;
Koncar, B. ;
Tekavcic, M. .
NUCLEAR MATERIALS AND ENERGY, 2023, 37
[43]   FE simulation of the Wendelstein 7-X cryostat system [J].
Tereshchenko, A. ;
Bykov, V. ;
Schauer, F. ;
Ye, M. Y. ;
Weissflog, S. ;
Andreeva, T. .
FUSION ENGINEERING AND DESIGN, 2009, 84 (7-11) :1833-1837
[44]   High-performance plasmas after pellet injections in Wendelstein 7-X [J].
Bozhenkov, S. A. ;
Kazakov, Y. ;
Ford, O. P. ;
Beurskens, M. N. A. ;
Alcuson, J. ;
Alonso, J. A. ;
Baldzuhn, J. ;
Brandt, C. ;
Brunner, K. J. ;
Damm, H. ;
Fuchert, G. ;
Geiger, J. ;
Grulke, O. ;
Hirsch, M. ;
Hoefel, U. ;
Huang, Z. ;
Knauer, J. ;
Krychowiak, M. ;
Langenberg, A. ;
Laqua, H. P. ;
Lazerson, S. ;
Marushchenko, N. B. ;
Moseev, D. ;
Otte, M. ;
Pablant, N. ;
Pasch, E. ;
Pavone, A. ;
Proll, J. H. E. ;
Rahbarnia, K. ;
Scott, E. R. ;
Smith, H. M. ;
Stange, T. ;
von Stechow, A. ;
Thomsen, H. ;
Turkin, Yu ;
Wurden, G. ;
Xanthopoulos, P. ;
Zhang, D. ;
Wolf, R. C. .
NUCLEAR FUSION, 2020, 60 (06)
[45]   Manufacturing of the Wendelstein 7-X divertor and wall protection [J].
Benhard, S ;
Boscary, J ;
Greuner, H ;
Grigull, P ;
Kisslinger, J ;
Li, C ;
Mendelevitch, B ;
Pirsch, T ;
Rust, N ;
Schweizer, S ;
Vorköper, A ;
Weissgerber, M .
FUSION ENGINEERING AND DESIGN, 2005, 75-79 :463-468
[46]   The in-vessel components of the experiment WENDELSTEIN 7-X [J].
Stadler, R. ;
Vorkoeper, A. ;
Boscary, J. ;
Cardella, A. ;
Hurd, F. ;
Li, Ch. ;
Mendelevitch, B. ;
Peacock, A. ;
Pirsch, H. .
FUSION ENGINEERING AND DESIGN, 2009, 84 (2-6) :305-308
[47]   Large wetted areas of divertor power loads at Wendelstein 7-X [J].
Niemann, H. ;
Drewelow, P. ;
Jakubowski, M. W. ;
Sitjes, Puig A. ;
Cannas, B. ;
Gao, Y. ;
Pisano, F. ;
Koenig, R. ;
Burhenn, R. ;
Hacker, P. ;
Reimold, F. ;
Zhang, D. ;
Brunner, K. J. ;
Knauer, J. ;
Sunn Pedersen, T. .
NUCLEAR FUSION, 2020, 60 (08)
[48]   Transition from Construction to Operation Phase of the Wendelstein 7-X Stellarator [J].
Bosch, Hans-Stephan ;
Brakel, Rudolf ;
Gasparotto, Maurizio ;
Grote, Heinz ;
Hartmann, Dirk A. ;
Herrmann, Rene ;
Nagel, Michael ;
Naujoks, Dirk ;
Otte, Matthias ;
Risse, Konrad ;
Rummel, Thomas ;
Werner, Andreas .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2014, 42 (03) :432-438
[49]   Plasma beta effects on the edge magnetic field structure and divertor heat loads in Wendelstein 7-X high-performance scenarios [J].
Knieps, A. ;
Suzuki, Y. ;
Geiger, J. ;
Dinklage, A. ;
Zhou, S. ;
Rahbarnia, K. ;
Schilling, J. ;
Neuner, U. ;
Thomsen, H. ;
Jakubowski, M. ;
Koenig, R. ;
Endler, M. ;
Gao, Y. ;
Sitjes, A. Puig ;
Niemann, H. ;
Beurskens, M. ;
Bozhenkov, S. ;
Liang, Y. .
NUCLEAR FUSION, 2022, 62 (02)
[50]   Power supplies for the WENDELSTEIN 7-X stellarator [J].
Rummel, T ;
Füllenbach, F ;
Mönnich, T .
FUSION ENGINEERING AND DESIGN, 2003, 66-68 :1115-1118