Design parameters optimization of an electrothermal flow biosensor for the SARS-CoV-2 S protein immunoassay

被引:6
作者
Kaziz, S. [1 ,2 ]
Ben Mariem, I [1 ]
Echouchene, F. [3 ]
Gazzah, M. H. [1 ]
Belmabrouk, H. [3 ,4 ]
机构
[1] Univ Monastir, Fac Sci Monastir, Quantum & Stat Phys Lab, Environm Blvd, Monastir 5019, Tunisia
[2] Univ Tunis, Higher Natl Engn Sch Tunis, Taha Hussein Montfleury Blvd, Tunis 1008, Tunisia
[3] Univ Monastir, Fac Sci Monastir, Lab Elect & Microelect, Environm Blvd, Monastir 5019, Tunisia
[4] Majmaah Univ, Coll Sci Al Zulfi, Dept Phys, Al Majmaah 11952, Saudi Arabia
关键词
Biosensor; SARS-CoV-2 S protein; ACET flow; Design parameters; Detection time; MICROFLUIDIC BIOSENSOR; SIMULATION; KINETICS; ANTIGEN; BINDING;
D O I
10.1007/s12648-022-02360-w
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
To combat the coronavirus disease 2019 (COVID-19), great efforts have been made by scientists around the world to improve the performance of detection devices so that they can efficiently and quickly detect the virus responsible for this disease. In this context we performed 2D finite element simulation on the kinetics of SARS-CoV-2 S protein binding reaction of a biosensor using the alternating current electrothermal (ACET) effect. The ACET flow can produce vortex patterns, thereby improving the transportation of the target analyte to the binding surface and thus enhancing the performance of the biosensor. Optimization of some design parameters concerning the microchannel height and the reaction surface, such as its length as well as its position on the top wall of the microchannel, in order to improve the biosensor efficiency, was studied. The results revealed that the detection time can be improved by 55% with an applied voltage of 10 V-rms and an operating frequency of 150 kHz and that the decrease in the height of the microchannel and in the length of the binding surface can lead to an increase in the rate of the binding reaction and therefore decrease the biosensor response time. Also, moving the sensitive surface from an optimal position, located in front of the electrodes, decreases the performance of the device.
引用
收藏
页码:4091 / 4101
页数:11
相关论文
共 50 条
  • [1] Design parameters optimization of an electrothermal flow biosensor for the SARS-CoV-2 S protein immunoassay
    Sameh Kaziz
    Ibrahim Ben Mariem
    Fraj Echouchene
    Mohamed Hichem Gazzah
    Hafedh Belmabrouk
    Indian Journal of Physics, 2022, 96 : 4091 - 4101
  • [2] Numerical optimization of microfluidic biosensor detection time for the SARS-CoV-2 using the Taguchi method
    Ben Mariem, I
    Kaziz, S.
    Belkhiria, M.
    Echouchene, F.
    Belmabrouk, H.
    INDIAN JOURNAL OF PHYSICS, 2023, 97 (09) : 2621 - 2628
  • [3] Design and Development of Graphene FET Biosensor for the Detection of SARS-CoV-2
    Krsihna, B. Vamsi
    Ahmadsaidulu, Shaik
    Teja, Surapaneni Sai Tarun
    Jayanthi, D.
    Navaneetha, Alluri
    Reddy, P. Rahul
    Prakash, M. Durga
    SILICON, 2022, 14 (11) : 5913 - 5921
  • [4] Design and Development of Graphene FET Biosensor for the Detection of SARS-CoV-2
    B. Vamsi Krsihna
    Shaik Ahmadsaidulu
    Surapaneni Sai Tarun Teja
    D. Jayanthi
    Alluri Navaneetha
    P. Rahul Reddy
    M. Durga Prakash
    Silicon, 2022, 14 : 5913 - 5921
  • [5] Numerical optimization of microfluidic biosensor detection time for the SARS-CoV-2 using the Taguchi method
    Ibrahim Ben Mariem
    Sameh Kaziz
    Maissa Belkhiria
    Fraj Echouchene
    Hafedh Belmabrouk
    Indian Journal of Physics, 2023, 97 : 2621 - 2628
  • [6] Rapid detection of SARS-CoV-2: The gradual boom of lateral flow immunoassay
    He, Jing
    Zhu, Shuying
    Zhou, Jiawei
    Jiang, Wenjie
    Yin, Liliang
    Su, Lan
    Zhang, Xinling
    Chen, Qi
    Li, Xiaoping
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2023, 10
  • [7] In-silico design of a potential inhibitor of SARS-CoV-2 S protein
    Jaiswal, Grijesh
    Kumar, Veerendra
    PLOS ONE, 2020, 15 (10):
  • [8] Electrochemical Capillary Driven Immunoassay for Detection of SARS-CoV-2
    Clark, Kaylee M.
    Schenkel, Melissa S.
    Pittman, Trey W.
    Samper, Isabelle C.
    Anderson, Loran B. R.
    Khamcharoen, Wisarut
    Elmegerhi, Suad
    Perera, Rushika
    Siangproh, Weena
    Kennan, Alan J.
    Geiss, Brian J.
    Dandy, David S.
    Henry, Charles S.
    ACS MEASUREMENT SCIENCE AU, 2022, 2 (06): : 584 - 594
  • [9] Portable microfluidic impedance biosensor for SARS-CoV-2 detection
    Laleh, Soroush
    Ibarlucea, Bergoi
    Stadtmueller, Marlena
    Cuniberti, Gianaurelio
    Medina-Sanchez, Mariana
    BIOSENSORS & BIOELECTRONICS, 2023, 236
  • [10] A computational approach to rapidly design peptides that detect SARS-CoV-2 surface protein S
    Hajikarimlou, Maryam
    Hooshyar, Mohsen
    Moutaoufik, Mohamed Taha
    Aly, Khaled A.
    Azad, Taha
    Takallou, Sarah
    Jagadeesan, Sasi
    Phanse, Sadhna
    Said, Kamaledin B.
    Samanfar, Bahram
    Bell, John C.
    Dehne, Frank
    Babu, Mohan
    Golshani, Ashkan
    NAR GENOMICS AND BIOINFORMATICS, 2022, 4 (03)