A sharp condition for scattering of the radial 3D cubic nonlinear Schrodinger equation

被引:195
作者
Holmer, Justin [1 ]
Roudenko, Svetlana [2 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[2] Arizona State Univ, Dept Math & Stat, Tempe, AZ 85287 USA
关键词
D O I
10.1007/s00220-008-0529-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the problem of identifying sharp criteria under which radial H-1 (finite energy) solutions to the focusing 3d cubic nonlinear Schrodinger equation (NLS) i partial derivative(t)u + Delta u + vertical bar u vertical bar(2)u = 0 scatter, i.e., approach the solution to a linear Schrodinger equation as t -> +/-infinity. The criteria is expressed in terms of the scale-invariant quantities vertical bar vertical bar u(0 vertical bar vertical bar)L(2 vertical bar vertical bar) del u(0 vertical bar vertical bar)L(2) and M[u] E[u], where u(0) denotes the initial data, and M[u] and E[u] denote the ( conserved in time) mass and energy of the corresponding solution u( t). The focusing NLS possesses a soliton solution e(it) Q(x), where Q is the ground-state solution to a nonlinear elliptic equation, and we prove that if M[u] E[u] < M[Q] E[Q] and vertical bar vertical bar u(0 vertical bar vertical bar) L-2 vertical bar vertical bar del u(0 vertical bar vertical bar) L-2 < vertical bar vertical bar Q vertical bar vertical bar L-2 vertical bar vertical bar del Q vertical bar vertical bar L-2, then the solution u(t) is globally well-posed and scatters. This condition is sharp in the sense that the soliton solution e(it) Q(x), for which equality in these conditions is obtained, is global but does not scatter. We further show that if M[u] E[u] < M[Q] E[Q] and vertical bar vertical bar u(0 vertical bar vertical bar) L-2 vertical bar vertical bar del u(0) vertical bar vertical bar L-2 > vertical bar vertical bar Q vertical bar vertical bar L-2 vertical bar vertical bar del Q vertical bar vertical bar L-2, then the solution blows-up in finite time. The technique employed is parallel to that employed by Kenig-Merle [17] in their study of the energy-critical NLS.
引用
收藏
页码:435 / 467
页数:33
相关论文
共 33 条
  • [1] Begout P., 2002, ADV MATH SCI APPL, V12, P817
  • [2] Stability criterion for attractive Bose-Einstein condensates -: art. no. 023607
    Bergé, L
    Alexander, TJ
    Kivshar, YS
    [J]. PHYSICAL REVIEW A, 2000, 62 (02) : 6
  • [3] Cazenave T., 2003, Semilinear Schrodinger equations, V10
  • [4] Global existence and scattering for rough solutions of a nonlinear Schrodinger equation on R3
    Colliander, J
    Keel, M
    Staffilani, G
    Takaoka, H
    Tao, T
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2004, 57 (08) : 987 - 1014
  • [5] COLLIANDER J, 2006, GLOBAL WELL POSEDNES
  • [6] Dynamics of collapsing and exploding Bose-Einstein condensates
    Donley, EA
    Claussen, NR
    Cornish, SL
    Roberts, JL
    Cornell, EA
    Wieman, CE
    [J]. NATURE, 2001, 412 (6844) : 295 - 299
  • [7] DUYCKAERTS T, ARXIV08061752MATHAP
  • [8] FIBICH G, 2008, SELFFOCUSIN IN PRESS
  • [9] Inhomogeneous Strichartz estimates
    Foschi, D
    [J]. JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2005, 2 (01) : 1 - 24
  • [10] GINIBRE J, 1985, J MATH PURE APPL, V64, P363