Improvement of surface bioactivity of poly(lactic acid) biopolymer by sandblasting with hydroxyapatite bioceramic

被引:18
作者
Bae, Ji-Young [1 ,2 ]
Won, Jong-Eun [1 ,3 ,4 ]
Park, Jong-Sub [5 ]
Lee, Hae-Hyoung [1 ,2 ]
Kim, Hae-Won [1 ,2 ,3 ,4 ]
机构
[1] Dankook Univ, Inst Tissue Regenerat Engn ITREN, Yongin, South Korea
[2] Dankook Univ, Sch Dent, Dept Biomat Sci, Yongin, South Korea
[3] Dankook Univ, Grad Sch, Dept Nanobiomed Sci, Biomat & Tissue Engn Lab, Yongin, South Korea
[4] Dankook Univ, Grad Sch, WCU Res Ctr, Yongin, South Korea
[5] Dankook Univ, Sch Dent, Dept Oral Anat, Yongin, South Korea
关键词
Bioceramics; Surface modification; Polymers; BIODEGRADABLE POLYMERS; BONE; RESPONSES; IMPLANTS;
D O I
10.1016/j.matlet.2011.06.023
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study communicates a simple and effective method for modification of the surface of synthetic biopolymer poly(lactic acid) (PLA) with bioactive ceramic hydroxyapatite (HA) using a sandblasting technique. The sandblasting particles were bombarded onto the PLA, covering the surface quite evenly. The HA-sandblasted PLA showed good in vitro apatite forming ability in a simulated body fluid within a few days, which was rarely observed for pure PLA. Moreover, the HA-sandblasted PLA enhanced the initial cell adhesion and further proliferation, and up-regulated bone cell functions such as the alkaline phosphatase activity. This novel method of surface modification of the biopolymer with bioactive ceramic has the potential for use in developing bone bioactive implantable materials. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:2951 / 2955
页数:5
相关论文
共 18 条
  • [1] Barrows T., 1986, Clinical materials, V1, P233, DOI [DOI 10.1016/S0267-6605(86)80015-4, 10.1016/S0267-6605(86)80015-4]
  • [2] INFLUENCE OF SURFACE CHARACTERISTICS ON BONE INTEGRATION OF TITANIUM IMPLANTS - A HISTOMORPHOMETRIC STUDY IN MINIATURE PIGS
    BUSER, D
    SCHENK, RK
    STEINEMANN, S
    FIORELLINI, JP
    FOX, CH
    STICH, H
    [J]. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, 1991, 25 (07): : 889 - 902
  • [3] Bone Cell Responses of Titanium Blasted with Bioactive Glass Particles
    Choi, Chang-Rak
    Yu, Hye-Sun
    Kim, Chul-Hwan
    Lee, Jae-Hoon
    Oh, Chung-Hun
    Kim, Hae-Won
    Lee, Hae-Hyoung
    [J]. JOURNAL OF BIOMATERIALS APPLICATIONS, 2010, 25 (02) : 99 - 117
  • [4] Nonthermal Plasma Technology as a Versatile Strategy for Polymeric Biomaterials Surface Modification: A Review
    Desmet, Tim
    Morent, Rino
    De Geyter, Nathalie
    Leys, Christophe
    Schacht, Etienne
    Dubruel, Peter
    [J]. BIOMACROMOLECULES, 2009, 10 (09) : 2351 - 2378
  • [5] Polymeric biomaterials
    Griffith, LG
    [J]. ACTA MATERIALIA, 2000, 48 (01) : 263 - 277
  • [6] Surface modification of polyester biomaterials for tissue engineering
    Jiao, Yan-Peng
    Cui, Fu-Zhai
    [J]. BIOMEDICAL MATERIALS, 2007, 2 (04) : R24 - R37
  • [7] Apatite-forming ability of carboxyl group-containing polymer gels in a simulated body fluid
    Kawashita, M
    Nakao, M
    Minoda, M
    Kim, HM
    Beppu, T
    Miyamoto, T
    Kokubo, T
    Nakamura, T
    [J]. BIOMATERIALS, 2003, 24 (14) : 2477 - 2484
  • [8] Nanofibrous matrices of poly(lactic acid) and gelatin polymeric blends for the improvement of cellular responses
    Kim, Hae-Won
    Yu, Hye-Sun
    Lee, Hae-Hyoung
    [J]. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2008, 87A (01) : 25 - 32
  • [9] Bioactivity and osteoblast responses of novel biomedical nanocomposites of bioactive glass nanofiber filled poly(lactic acid)
    Kim, Hae-Won
    Lee, Hae-Hyoung
    Chun, Gae-Sig
    [J]. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2008, 85A (03) : 651 - 663
  • [10] Hydroxyapatite/poly(ε-caprolactone) composite coatings on hydroxyapatite porous bone scaffold for drug delivery
    Kim, HW
    Knowles, JC
    Kim, HE
    [J]. BIOMATERIALS, 2004, 25 (7-8) : 1279 - 1287