Enhanced Electrochemical performance at high temperature of Cobalt Oxide/Reduced Graphene Oxide Nanocomposites and its application in lithium-ion batteries

被引:36
|
作者
Mussa, Yasmin [1 ]
Ahmed, Faheem [1 ]
Abuhimd, Hatem [2 ]
Arsalan, Muhammad [3 ]
Alsharaeh, Edreese [1 ]
机构
[1] Alfaisal Univ, Coll Sci & Gen Studies, POB 50927, Riyadh 11533, Saudi Arabia
[2] King Abdulaziz City Sci & Technol, Natl Nanotechnol Ctr, POB 6086, Riyadh 11442, Saudi Arabia
[3] Saudi Aramco, EXPEC Adv Res Ctr, POB 5000, Dhahran 31311, Saudi Arabia
关键词
MICROWAVE-ASSISTED SYNTHESIS; ANODE MATERIALS; CO3O4; NANOPARTICLES; HYDROTHERMAL SYNTHESIS; COMPOSITE; FACILE;
D O I
10.1038/s41598-018-37032-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We report a microwave irradiation method for the preparation of reduced graphene oxide (RGO) based Co3O4 nanocomposites as anodes for lithium-ion (li-ion) batteries. The Co3O4/RGO nanocomposites displayed good electrochemical behavior as anodic materials for li-ion batteries when compared to pure Co3O4. The Co3O4/RGO nanocomposites with low RGO content resulted in stable electrochemical performance with 100% coulombic efficiency at a high current density of 500 mA/g for 50 cycles. The enhanced capacity of the Co3O4/RGO nanocomposites is due to the incorporation of RGO, which resulted in a four times larger surface area than that of Co3O4. This increased surface area could facilitate the absorption of more lithium ions, resulting in excellent electrochemical performance. Interestingly, the novelty of this work is that the designed li-ion batteries showed stable electrochemical performance even at a high temperature of 100 degrees C, which might be useful for rechargeable battery applications in a wide temperature range.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] A new strategy to prepare Ge/GeO2-reduced graphene oxide microcubes for high-performance lithium-ion batteries
    Liu, Fei
    Wang, Yaping
    Shi, Junrong
    Lin, Jiande
    Zhou, Weijie
    Pan, Anqiang
    ELECTROCHIMICA ACTA, 2019, 318 : 314 - 321
  • [32] Reduced graphene oxide-wrapped copper cobalt selenide composites as anode materials for high-performance lithium-ion batteries
    Hui, Xin
    Zhao, Jiachang
    Mao, Jianfeng
    Zhao, Hongbin
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2023, 663
  • [33] TiO2/NiO/reduced graphene oxide nanocomposites as anode materials for high-performance lithium ion batteries
    Chen, Zehua
    Gao, Yu
    Zhang, Qixiang
    Li, Liangliang
    Ma, Pengcheng
    Xing, Baolin
    Cao, Jianliang
    Sun, Guang
    Bala, Hari
    Zhang, Chuanxiang
    Zhang, Zhanying
    Zeng, Yanyang
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 774 : 873 - 878
  • [34] Facile fabrication and electrochemical properties of high-quality reduced graphene oxide/cobalt sulfide composite as anode material for lithium-ion batteries
    Li, Zhangpeng
    Li, Wenyue
    Xue, Hongtao
    Kang, Wenpei
    Yang, Xia
    Sun, Mingliang
    Tang, Yongbing
    Lee, Chun-Sing
    RSC ADVANCES, 2014, 4 (70): : 37180 - 37186
  • [35] Preparation and Electrochemical Performance of Various Morphologies Cobalt Oxide as Anode Materials for Lithium-ion Batteries
    Wu, Yongjun
    Han, Jing
    Xie, Nina
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2019, 14 (04): : 3644 - 3650
  • [36] Designed synthesis of SnO2-polyaniline-reduced graphene oxide nanocomposites as an anode material for lithium-ion batteries
    Liang, Renlong
    Cao, Huaqiang
    Qian, Dong
    Zhang, Jingxian
    Qu, Meizhen
    JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (44) : 17654 - 17657
  • [37] Enhanced rate performance of cobalt oxide/nitrogen doped graphene composite for lithium ion batteries
    Li, Dan
    Shi, Dongqi
    Chen, Zhixin
    Liu, Huakun
    Jia, Dianzeng
    Guo, Zaiping
    RSC ADVANCES, 2013, 3 (15): : 5003 - 5008
  • [38] SnO2/Reduced Graphene Oxide Nanocomposite as Anode Material for Lithium-Ion Batteries with Enhanced Cyclability
    Jiang, Wenjuan
    Zhao, Xike
    Ma, Zengsheng
    Lin, Jianguo
    Lu, Chunsheng
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2016, 16 (04) : 4136 - 4140
  • [39] Facile synthesis of germanium-reduced graphene oxide composite as anode for high performance lithium-ion batteries
    Zhong, Xiongwu
    Wang, Jiaqing
    Li, Weihan
    Liu, Xiaowu
    Yang, Zhenzhong
    Gu, Lin
    Yu, Yan
    RSC ADVANCES, 2014, 4 (102): : 58184 - 58189
  • [40] Synthesis of MnOx/reduced graphene oxide nanocomposite as an anode electrode for lithium-ion batteries
    Weng, Shao-Chieh
    Brahma, Sanjaya
    Chang, Chia-Chin
    Huang, Jow-Lay
    CERAMICS INTERNATIONAL, 2017, 43 (06) : 4873 - 4879