Enhanced Electrochemical performance at high temperature of Cobalt Oxide/Reduced Graphene Oxide Nanocomposites and its application in lithium-ion batteries

被引:36
|
作者
Mussa, Yasmin [1 ]
Ahmed, Faheem [1 ]
Abuhimd, Hatem [2 ]
Arsalan, Muhammad [3 ]
Alsharaeh, Edreese [1 ]
机构
[1] Alfaisal Univ, Coll Sci & Gen Studies, POB 50927, Riyadh 11533, Saudi Arabia
[2] King Abdulaziz City Sci & Technol, Natl Nanotechnol Ctr, POB 6086, Riyadh 11442, Saudi Arabia
[3] Saudi Aramco, EXPEC Adv Res Ctr, POB 5000, Dhahran 31311, Saudi Arabia
关键词
MICROWAVE-ASSISTED SYNTHESIS; ANODE MATERIALS; CO3O4; NANOPARTICLES; HYDROTHERMAL SYNTHESIS; COMPOSITE; FACILE;
D O I
10.1038/s41598-018-37032-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We report a microwave irradiation method for the preparation of reduced graphene oxide (RGO) based Co3O4 nanocomposites as anodes for lithium-ion (li-ion) batteries. The Co3O4/RGO nanocomposites displayed good electrochemical behavior as anodic materials for li-ion batteries when compared to pure Co3O4. The Co3O4/RGO nanocomposites with low RGO content resulted in stable electrochemical performance with 100% coulombic efficiency at a high current density of 500 mA/g for 50 cycles. The enhanced capacity of the Co3O4/RGO nanocomposites is due to the incorporation of RGO, which resulted in a four times larger surface area than that of Co3O4. This increased surface area could facilitate the absorption of more lithium ions, resulting in excellent electrochemical performance. Interestingly, the novelty of this work is that the designed li-ion batteries showed stable electrochemical performance even at a high temperature of 100 degrees C, which might be useful for rechargeable battery applications in a wide temperature range.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Zn2SnO4 coated reduced graphene oxide nanoribbons with enhanced electrochemical performance for lithium-ion batteries
    Mingjun Jing
    Zhaohui Hou
    Hang Yang
    Gangyong Li
    Minjie Zhou
    Wenyuan Xu
    Journal of Materials Research, 2016, 31 : 3666 - 3674
  • [22] Reduced graphene oxide composite aerogels for lithium-ion batteries
    Oznur Kaya Cakmak
    Journal of Porous Materials, 2022, 29 : 1771 - 1778
  • [23] Zn2SnO4 coated reduced graphene oxide nanoribbons with enhanced electrochemical performance for lithium-ion batteries
    Jing, Mingjun
    Hou, Zhaohui
    Yang, Hang
    Li, Gangyong
    Zhou, Minjie
    Xu, Wenyuan
    JOURNAL OF MATERIALS RESEARCH, 2016, 31 (23) : 3666 - 3674
  • [24] Reduced graphene oxide composite aerogels for lithium-ion batteries
    Cakmak, Oznur Kaya
    JOURNAL OF POROUS MATERIALS, 2022, 29 (06) : 1771 - 1778
  • [25] Enhanced electrochemical performance of cobalt oxide nanocube intercalated reduced graphene oxide for supercapacitor application
    Numan, Arshid
    Duraisamy, Navaneethan
    Omar, Fatin Saiha
    Mahipal, Y. K.
    Ramesh, K.
    Ramesh, S.
    RSC ADVANCES, 2016, 6 (41): : 34894 - 34902
  • [26] Vanadium Doping Enhanced Electrochemical Performance of Molybdenum Oxide in Lithium-Ion Batteries
    Qu, Gan
    Wang, Jun
    Liu, Guangyou
    Tian, Bingbing
    Su, Chenliang
    Chen, Zhesheng
    Rueff, J. Ean-Pascal
    Wang, Zhongchang
    ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (02)
  • [27] Enhanced Electrochemical Performance of Lithium Iron Phosphate Cathodes Using Plasma-Assisted Reduced Graphene Oxide Additives for Lithium-Ion Batteries
    Jekal, Suk
    Kim, Chan-Gyo
    Kim, Jiwon
    Kim, Ha-Yeong
    Chu, Yeon-Ryong
    Ra, Yoon-Ho
    Otgonbayar, Zambaga
    Yoon, Chang-Min
    BATTERIES-BASEL, 2024, 10 (10):
  • [28] Vanadium oxides-reduced graphene oxide composite for lithium-ion batteries and supercapacitors with improved electrochemical performance
    Zhao, Hongbin
    Pan, Lanying
    Xing, Siyi
    Luo, Jun
    Xu, Jiaqiang
    JOURNAL OF POWER SOURCES, 2013, 222 : 21 - 31
  • [29] Reduced graphene oxide wrapped hollow molybdenum trioxide nanorod for high performance lithium-ion batteries
    Chenglong Yang
    Xiongwu Zhong
    Yu Jiang
    Yan Yu
    Chinese Chemical Letters, 2017, 28 (12) : 2231 - 2234
  • [30] A Multi layered Silicon-Reduced Graphene Oxide Electrode for High Performance Lithium-Ion Batteries
    Gao, Xianfeng
    Li, Jianyang
    Xie, Yuanyuan
    Guan, Dongsheng
    Yuan, Chris
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (15) : 7855 - 7862