Model Predictive Control for Human Following Rehabilitation Robot

被引:0
作者
Yan, Shihao [1 ]
Tao, Jing [3 ]
Huang, Jian [1 ,2 ]
Xue, Anshun [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Artificial Intelligence & Automat, Key Lab, Minist Educ Image Proc & Intelligent Control, Wuhan 430074, Peoples R China
[2] Beijing Adv Innovat Ctr Intelligent Robots & Syst, Beijing 100081, Peoples R China
[3] Minist Civil Affairs, Peoples Republ China Natl Res Ctr Rehabil Tech Ai, Beijing 100176, Peoples R China
来源
2019 IEEE INTERNATIONAL CONFERENCE ON ADVANCED ROBOTICS AND ITS SOCIAL IMPACTS (ARSO) | 2019年
关键词
Model Predictive Control; Human Following Side-by-side; Nonholonomic Mobile Robot; Rehabilitation Robot; Trajectory Tracking; MOBILE ROBOTS; TRACKING; EXOSKELETON; DESIGN;
D O I
10.1109/arso46408.2019.8948803
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A new type of rehabilitation robot that can follow the user side-by-side is designed for aiding the elderly and disabled. The Human Following Rehabilitation Robot (HFRR) consists of a metal armrest, a set of sensors and a differential mobile base. By predicting the user's speed in the future through the user's current walking speed and the preset path, the problem of human following side-by-side is converted to a problem of keeping a certain lateral distance from the predicted trajectory. Linearizing the tracking error model, the nonholonomic mobile robot (NMR) can maintain a certain lateral distance from the trajectory by using Model Predictive Control (MPC) and then follow the user side-by-side. The simulation and experimental results show the proposed controller can obtain good performance in this problem.
引用
收藏
页码:369 / 374
页数:6
相关论文
共 23 条
[1]  
[Anonymous], 2019, IEEE C ELEC DEVICES
[2]  
[Anonymous], ECMR
[3]  
Cao Z, 2017, DESTECH TRANS SOC, P25
[4]   Sliding-mode tracking control of nonholonomic wheeled mobile robots in polar coordinates [J].
Chwa, D .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2004, 12 (04) :637-644
[5]   Performance assessment of a pushrim-activated power-assisted wheelchair control system [J].
Cooper, RA ;
Corfman, TA ;
Fitzgerald, SG ;
Boninger, ML ;
Spaeth, DM ;
Ammer, W ;
Arva, J .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2002, 10 (01) :121-126
[6]   Lower-Limb Robotic Rehabilitation: Literature Review and Challenges [J].
Diaz, Inaki ;
Juan Gil, Jorge ;
Sanchez, Emilio .
JOURNAL OF ROBOTICS, 2011, 2011
[7]  
Huang J., 2018, IEEE T AUTOMATION SC
[8]   Interval Type-2 Fuzzy Logic Modeling and Control of a Mobile Two-Wheeled Inverted Pendulum [J].
Huang, Jian ;
Ri, MyongHyok ;
Wu, Dongrui ;
Ri, Songhyok .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2018, 26 (04) :2030-2038
[9]   Tracking-error model-based predictive control for mobile robots in real time [J].
Klancar, Gregor ;
Skrjanc, Igor .
ROBOTICS AND AUTONOMOUS SYSTEMS, 2007, 55 (06) :460-469
[10]   Design and control of an exoskeleton for the elderly and patients [J].
Kong, Kyoungchul ;
Jeon, Doyoung .
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2006, 11 (04) :428-432