Global behaviour of a reaction-diffusion system modelling chemotaxis

被引:289
作者
Gajewski, H [1 ]
Zacharias, K [1 ]
机构
[1] Forschungsverbund Berlin eV, Weierstr Inst Appl Anal & Stochast, D-10117 Berlin, Germany
关键词
initial boundary value problem; reaction-diffusion equations; a priori estimates; Lyapunov function; equilibria; asymptotic behaviour; population dynamics; chemotaxis;
D O I
10.1002/mana.19981950106
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using Lyapunov functionals the global behaviour of the solutions of a reaction-diffusion system modelling chemotaxis is studied for bounded piecewise smooth domains in the plane. Geometric criteria can be given so that this dynamical system tends to a (not necessarily trivial) stationary state.
引用
收藏
页码:77 / 114
页数:38
相关论文
共 33 条
[1]  
Adams A, 2003, SOBOLEV SPACES
[2]  
[Anonymous], 1973, OPERATEURS MAXIMAUX
[3]   SELECTIVE PROCESSING OF FOOD WORDS IN ANOREXIA-NERVOSA [J].
CHANNON, S ;
HEMSLEY, D ;
DESILVA, P .
BRITISH JOURNAL OF CLINICAL PSYCHOLOGY, 1988, 27 :259-260
[4]  
Diaz J. I., 1995, Adv. Math. Sci. Appl, V5, P659
[5]  
Dore G., 1993, LECT NOTES MATH, V1540, P25
[6]   ON THE BASIC EQUATIONS FOR CARRIER TRANSPORT IN SEMICONDUCTORS [J].
GAJEWSKI, H ;
GROGER, K .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1986, 113 (01) :12-35
[7]   CONVERGENCE OF AN ITERATION METHOD FOR EVOLUTION EQUATIONS [J].
GAJEWSKI, H ;
GROGER, K .
MATHEMATISCHE NACHRICHTEN, 1975, 68 :331-343
[8]  
GAJEWSKI H, 1993, 70 I ANG AN STOCH
[9]  
Gilbar D., 1983, ELLIPTIC PARTIAL DIF
[10]  
Giusti E., 1984, Monographs in mathematics