On a common generalization of symmetric rings and quasi duo rings

被引:0
作者
Subedi, T. [1 ]
Roy, D. [1 ]
机构
[1] Natl Inst Technol Meghalaya, Dept Math, Shillong, Meghalaya, India
来源
ALGEBRA AND DISCRETE MATHEMATICS | 2020年 / 29卷 / 02期
关键词
symmetric ring; Jacobson radical; J-symmetric ring; SF-RINGS;
D O I
10.12958/adm493
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let J(R) denote the Jacobson radical of a ring R. We call a ring R as J-symmetric if for any a, b, c is an element of R, abc = 0 implies bac is an element of J(R). It turns out that J-symmetric rings are a common generalization of left (right) quasi-duo rings and generalized weakly symmetric rings. Various properties of these rings are established and some results on exchange rings and the regularity of left SF-rings are generalized.
引用
收藏
页码:249 / 258
页数:10
相关论文
共 14 条
[1]   Classes of Almost Clean Rings [J].
Akalan, Evrim ;
Vas, Lia .
ALGEBRAS AND REPRESENTATION THEORY, 2013, 16 (03) :843-857
[2]   Commutative rings whose elements are a sum of a unit and idempotent [J].
Anderson, DD ;
Camillo, VP .
COMMUNICATIONS IN ALGEBRA, 2002, 30 (07) :3327-3336
[3]   EXCHANGE RINGS, UNITS AND IDEMPOTENTS [J].
CAMILLO, VP ;
YU, HP .
COMMUNICATIONS IN ALGEBRA, 1994, 22 (12) :4737-4749
[4]  
Kafkas G, 2011, ALGEBRA DISCRET MATH, V12, P72
[5]   LIFTING IDEMPOTENTS AND EXCHANGE RINGS [J].
NICHOLSON, WK .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 229 (MAY) :269-278
[6]   ON WEAK SYMMETRIC RINGS [J].
Ouyang, Lunqun ;
Chen, Huanyin .
COMMUNICATIONS IN ALGEBRA, 2010, 38 (02) :697-713
[7]   Some notes on nil-semicommutative rings [J].
Qu, Yinchun ;
Wei, Junchao .
TURKISH JOURNAL OF MATHEMATICS, 2014, 38 (02) :212-224
[8]   INJECTIVITY AND FLATNESS OF CERTAIN CYCLIC MODULES [J].
RAMAMURTHI, VS .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 48 (01) :21-25
[9]  
Rege M. B., 1986, Math. Jap, V31, P927
[10]   On SF-rings and Regular Rings [J].
Subedi, Tikaram ;
Buhphang, Ardeline Mary .
KYUNGPOOK MATHEMATICAL JOURNAL, 2013, 53 (03) :397-406