Stress driven creep deformation and cavitation damage in pure copper

被引:10
作者
Das, Yadunundan [1 ]
Fernandez-Caballero, Antonio [2 ]
Elmukashfi, Elsiddig [2 ]
Jazaeri, Hedieh [1 ]
Forsey, Alex [1 ]
Hutchings, Michael T. [1 ]
Schweins, Ralf [3 ]
Bouchard, P. John [1 ]
机构
[1] Open Univ, Engn & Innovat, Walton Hall, Milton Keynes MK7 6AA, Bucks, England
[2] Univ Oxford, Dept Engn Sci, Oxford OX1 3PJ, England
[3] Inst Laue Langevin, 71 Ave Martyrs CS 20156, F-38042 Grenoble 9, France
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2022年 / 833卷
基金
英国工程与自然科学研究理事会;
关键词
Creep; Cavity nucleation; Damage; SANS; Copper; Self consistent; ANGLE NEUTRON-SCATTERING; CAVITY NUCLEATION; PILE-UPS; FRACTURE; DISTRIBUTIONS; RETRIEVAL; GROWTH;
D O I
10.1016/j.msea.2021.142543
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The stress dependence of creep deformation and cavitation damage in pure copper at 250 degrees C under uniaxial loading is studied using a flat hourglass test specimen under uniaxial tensile load. In-situ digital image correlation (DIC) is used to monitor time dependent surface creep deformation, ex-situ small angle neutron scattering (SANS) applied to measure volumetric cavitation damage, and scanning electron microscopy used for surface characterisation. A self-consistent discolation model is successfully applied to explain the full field multi-stress creep deformation behaviour measured by DIC. Through approximating a range of shaped cavities with a model distribution of spherical voids, a minimum stable cavity nucleation diameter range of 600 to 1200 angstrom, depending on the applied stress level, is clearly observed in the SANS results. This finding supports the validity of the classical surface energy/work balance expression defining the minimum stable cavity size. All cavities observed in interrupted life samples were facetted in nature. The SANS data imply continuous cavity nucleation and growth throughout creep life, with a nucleation rate at stresses less than 100 MPa linearly related to the creep rate. This is in accordance with the double ledge grain boundary sliding nucleation model of Sandstrom and Wu [1].
引用
收藏
页数:13
相关论文
共 52 条
[1]  
[Anonymous], 2014, ASTM INT STANDARD TE, P1, DOI [DOI 10.1520/E0112-13.1.4, 10.1520/E0647-15E01, DOI 10.1520/E0112-13, 10.1520/E1252-98R13, DOI 10.1520/E1252-98R13]
[2]   Mantid-Data analysis and visualization package for neutron scattering and μ SR experiments [J].
Arnold, O. ;
Bilheux, J. C. ;
Borreguero, J. M. ;
Buts, A. ;
Campbell, S. I. ;
Chapon, L. ;
Doucet, M. ;
Draper, N. ;
Leal, R. Ferraz ;
Gigg, M. A. ;
Lynch, V. E. ;
Markvardsen, A. ;
Mikkelson, D. J. ;
Mikkelson, R. L. ;
Miller, R. ;
Palmen, K. ;
Parker, P. ;
Passos, G. ;
Perring, T. G. ;
Peterson, P. F. ;
Ren, S. ;
Reuter, M. A. ;
Savici, A. T. ;
Taylor, J. W. ;
Taylor, R. J. ;
Tolchenoy, R. ;
Zhou, W. ;
Zikoysky, J. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2014, 764 :156-166
[3]  
Ashby M.F., 1982, DEFORMATION MECH MAP
[4]   FIRST REPORT ON DEFORMATION-MECHANISM MAPS [J].
ASHBY, MF .
ACTA METALLURGICA, 1972, 20 (07) :887-+
[5]   The inter-relationship between grain boundary sliding and cavitation during creep of polycrystalline copper [J].
Ayensu, A ;
Langdon, TG .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1996, 27 (04) :901-907
[6]   GROWTH OF VOIDS IN METALS DURING DIFFUSION AND CREEP [J].
BALLUFFI, RW ;
SEIGLE, LL .
ACTA METALLURGICA, 1957, 5 (08) :449-454
[7]   McSAS: software for the retrieval of model parameter distributions from scattering patterns [J].
Bressler, I. ;
Pauw, B. R. ;
Thuenemann, A. F. .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2015, 48 :962-969
[8]  
Cabanas -Moreno J.G., 1983, STUDIES GRAIN BOUNDA, P95
[9]  
Cane B. J., 1975, Metal Science, V9, P55, DOI 10.1179/030634575790444405
[10]   CONTINUOUS CREEP CAVITY NUCLEATION BY STOCHASTIC GRAIN-BOUNDARY SLIDING [J].
CHAN, KS ;
PAGE, RA .
JOURNAL OF MATERIALS SCIENCE, 1990, 25 (11) :4622-4629