Molecular dynamics simulations of pressure effects on hydrophobic interactions

被引:143
作者
Ghosh, T
García, AE
Garde, S [1 ]
机构
[1] Rensselaer Polytech Inst, Dept Chem Engn, Troy, NY 12180 USA
[2] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
关键词
D O I
10.1021/ja010446v
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report results on the pressure effects on hydrophobic interactions obtained from molecular dynamics simulations of aqueous solutions of methanes in water. A wide range of pressures that is relevant to pressure denaturation of proteins is investigated. The characteristic features of water-mediated interactions between hydrophobic solutes are found to be pressure-dependent. In particular, with increasing pressure we find that (1) the solvent-separated configurations in the solute-solute potential of mean force (PMF) are stabilized with respect to the contact configurations; (2) the desolvation barrier increases monotonically with respect to both contact and solvent-separated configurations; (3) the locations of the minima and the barrier move toward shorter separations; and (4) pressure effects are considerably amplified for larger hydrophobic solutes. Together, these observations lend strong support to the picture of the pressure denaturation process proposed previously by Hummer et al. (Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 1552): with increasing pressure, the transfer of water into protein interior becomes key to the pressure denaturation process, leading to-the dissociation of close hydrophobic contacts and subsequent swelling of the hydrophobic protein interior through insertions of water molecules. The pressure dependence of the PMF between larger hydrophobic solutes shows that pressure effects on the interaction between hydrophobic amino acids may be considerably amplified compared to those on the methane-methane PMF.
引用
收藏
页码:10997 / 11003
页数:7
相关论文
共 52 条
  • [11] ERROR-ESTIMATES ON AVERAGES OF CORRELATED DATA
    FLYVBJERG, H
    PETERSEN, HG
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1989, 91 (01) : 461 - 466
  • [12] Origin of entropy convergence in hydrophobic hydration and protein folding
    Garde, S
    Hummer, G
    Garcia, AE
    Paulaitis, ME
    Pratt, LR
    [J]. PHYSICAL REVIEW LETTERS, 1996, 77 (24) : 4966 - 4968
  • [13] Hydrophobic interactions: Conformational equilibria and the association of non-polar molecules in water
    Garde, S
    Hummer, G
    Paulaitis, ME
    [J]. FARADAY DISCUSSIONS, 1996, 103 : 125 - 139
  • [14] Pressure-tuning the conformation of bovine pancreatic trypsin inhibitor studied by Fourier-transform infrared spectroscopy
    Goossens, K
    Smeller, L
    Frank, J
    Heremans, K
    [J]. EUROPEAN JOURNAL OF BIOCHEMISTRY, 1996, 236 (01): : 254 - 262
  • [15] PROTEINS UNDER PRESSURE - THE INFLUENCE OF HIGH HYDROSTATIC-PRESSURE ON STRUCTURE, FUNCTION AND ASSEMBLY OF PROTEINS AND PROTEIN COMPLEXES
    GROSS, M
    JAENICKE, R
    [J]. EUROPEAN JOURNAL OF BIOCHEMISTRY, 1994, 221 (02): : 617 - 630
  • [16] VOLUME CHANGES ON PROTEIN-FOLDING
    HARPAZ, Y
    GERSTEIN, M
    CHOTHIA, C
    [J]. STRUCTURE, 1994, 2 (07) : 641 - 649
  • [17] Pressure-induced protein-folding/unfolding kinetics
    Hillson, N
    Onuchic, JN
    García, AE
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (26) : 14848 - 14853
  • [18] HOBBS PV, 1974, ICE PHYSICS
  • [19] An information theory model of hydrophobic interactions
    Hummer, G
    Garde, S
    Garcia, AE
    Pohorille, A
    Pratt, LR
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (17) : 8951 - 8955
  • [20] The pressure dependence of hydrophobic interactions is consistent with the observed pressure denaturation of proteins
    Hummer, G
    Garde, S
    García, AE
    Paulaitis, ME
    Pratt, LR
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (04) : 1552 - 1555