Anti-Gaussian Quadrature Rule for Trigonometric Polynomials

被引:2
作者
Petrovic, Nevena Z. [1 ]
Stanic, Marija P. [1 ]
Mladenovic, Tatjana V. Tornovic [1 ]
机构
[1] Univ Kragujevac, Fac Sci, Dept Math & Informat, Radoja Domanovica 12, Kragujevac 34000, Serbia
关键词
anti-Gaussian quadrature rules; recurrence relation; averaged Gaussian formula; UNITARY; ALGORITHM;
D O I
10.2298/FIL2203005P
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, anti-Gaussian quadrature rules for trigonometric polynomials are introduced. Special attention is paid to an even weight function on [-pi, pi). The main properties of such quadrature rules are proved and a numerical method for their construction is presented. That method is based on relations between nodes and weights of the quadrature rule for trigonometric polynomials and the quadrature rule for algebraic polynomials. Some numerical examples are included. Also, we compare our method with other available methods.
引用
收藏
页码:1005 / 1019
页数:15
相关论文
共 29 条
[1]   Simplified anti-Gauss quadrature rules with applications in linear algebra [J].
Alqahtani, Hessah ;
Reichel, Lothar .
NUMERICAL ALGORITHMS, 2018, 77 (02) :577-602
[2]  
[Anonymous], 2000, FACTA U
[3]   Symmetric Gauss-Lobatto and modified anti-Gauss rules [J].
Calvetti, D ;
Reichel, L .
BIT NUMERICAL MATHEMATICS, 2003, 43 (03) :541-554
[4]  
Cruz-Barroso R, 2005, ANN MATH INFORM, V32, P5
[5]   Trigonometric Orthogonal Systems [J].
Cvetkovic, Aleksandar S. ;
Stanic, Marija P. .
APPROXIMATION AND COMPUTATION: IN HONOR OF GRADIMIR V. MILOVANOVIC, 2011, 42 :103-+
[6]  
Devyatko V. I., 1963, USSR COMP MATH MATH+, V3, P336
[7]   BLOCK GAUSS AND ANTI-GAUSS QUADRATURE WITH APPLICATION TO NETWORKS [J].
Fenu, C. ;
Martin, D. ;
Reichel, L. ;
Rodriguez, G. .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2013, 34 (04) :1655-1684
[8]  
Gauss C.F, 1814, Commentationes Societatis Regiae Scientarium Recentiores, V3, P123
[9]  
Gautsschi W, 2004, ORTHOGONAL POLYNOMIA
[10]   A DIVIDE-AND-CONQUER METHOD FOR UNITARY AND ORTHOGONAL EIGENPROBLEMS [J].
GRAGG, WB ;
REICHEL, L .
NUMERISCHE MATHEMATIK, 1990, 57 (08) :695-718