A 2k kernel for the cluster editing problem

被引:46
作者
Chen, Jianer [1 ]
Meng, Jie [1 ]
机构
[1] Texas A&M Univ, Dept Comp Sci & Engn, College Stn, TX 77843 USA
基金
美国国家科学基金会;
关键词
NP-hard problem; Parameterized computation; Kernelization; Cluster editing; Critical clique; ALGORITHMS;
D O I
10.1016/j.jcss.2011.04.001
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The CLUSTER EDITING problem is a decision problem that, for a graph G and a parameter k, determines if one can apply at most k edge insertion/deletion operations on G so that the resulting graph becomes a union of disjoint cliques. The problem has attracted much attention because of its applications in a variety of areas. In this paper, we present a polynomial-time kernelization algorithm for the problem that produces a kernel of size bounded by 2k. More precisely, we develop an O(mn)-time algorithm that, on a graph G of n vertices and m edges and a parameter k, produces a graph G' and a parameter k' such that k' <= k, that G' has at most 2k' vertices, and that (G, k) is a yes-instance if and only if (G', k') is a yes-instance of the CLUSTER EDITING problem. This improves the previously best kernel of size 4k for the problem. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:211 / 220
页数:10
相关论文
共 20 条
  • [1] Correlation clustering
    Bansal, N
    Blum, A
    Chawla, S
    [J]. MACHINE LEARNING, 2004, 56 (1-3) : 89 - 113
  • [2] Clustering gene expression patterns
    Ben-Dor, A
    Shamir, R
    Yakhini, Z
    [J]. JOURNAL OF COMPUTATIONAL BIOLOGY, 1999, 6 (3-4) : 281 - 297
  • [3] Berkhin P, 2006, GROUPING MULTIDIMENSIONAL DATA: RECENT ADVANCES IN CLUSTERING, P25
  • [4] Going weighted: Parameterized algorithms for cluster editing
    Boecker, S.
    Briesemeister, S.
    Bui, Q. B. A.
    Truss, A.
    [J]. THEORETICAL COMPUTER SCIENCE, 2009, 410 (52) : 5467 - 5480
  • [5] Clustering with qualitative information
    Charikar, M
    Guruswami, V
    Wirth, A
    [J]. JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2005, 71 (03) : 360 - 383
  • [6] Computing phylogenetic roots with bounded degrees and errors
    Chen, ZZ
    Jiang, T
    Lin, GH
    [J]. SIAM JOURNAL ON COMPUTING, 2003, 32 (04) : 864 - 879
  • [7] Finding related pages in the World Wide Web
    Dean, J
    Henzinger, MR
    [J]. COMPUTER NETWORKS, 1999, 31 (11-16) : 1467 - 1479
  • [8] Dehne F, 2006, LECT NOTES COMPUT SC, V4169, P13
  • [9] Fellows M, 2007, LECT NOTES COMPUT SC, V4639, P312
  • [10] Fellows MR, 2006, LECT NOTES COMPUT SC, V4169, P276