Quasi-s.Baer and related modules

被引:2
作者
Birkenmeier, Gary F. [1 ]
Kara, Yeliz [2 ]
Tercan, Adnan [3 ]
机构
[1] Univ Louisiana Lafayette, Dept Math, Lafayette, LA 70504 USA
[2] Bursa Uludag Univ, Dept Math, TR-16059 Bursa, Turkey
[3] Hacettepe Univ, Dept Math, Beytepe Campus, TR-06532 Ankara, Turkey
关键词
Baer module; quasi-Baer module; projection invariant submodule; FI-extending module; pi-extending module; endomorphism ring; BAER; RINGS;
D O I
10.1142/S0219498822500517
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the s.Baer module concept and some of its generalizations (e.g. quasi-s.Baer, pi-s.Baer and p.q.-s.Baer) are developed. To this end, we characterize the class of rings for which every module is quasi-s.Baer as the class of rings which are finite direct sums of simple rings. Connections are made between the s.Baer (quasi-s.Baer, pi-s.Baer) and the extending (FI-extending, pi-extending) properties. We introduce the notions of quasi-nonsingularity (FI-s.nonsingular, pi-s.nonsingular) and M-cononsingular (FI-M-cononsingular, pi-M-cononsingular) to extend the Chatters-Khuri theorem from rings to modules satisfying s.Baer or related conditions. Moreover, we investigate the transfer of various Baer properties between a module and its ring of scalars. Conditions are found for which some classes of quasi-s.Baer modules coincide with some classes of p.q.-s.Baer modules. Further we show that the class of quasi-s.Baer (p.q.-s.Baer) modules is closed with respect to submodules, extensions, and finite (arbitrary) direct sums. Examples illustrate and delimit our results.
引用
收藏
页数:24
相关论文
共 32 条
[1]  
Anderson F.W., 1992, RINGS CATEGORIES MOD
[2]   π-endo Baer modules [J].
Birkenmeier, Gary F. ;
Kara, Yeliz ;
Tercan, Adnan .
COMMUNICATIONS IN ALGEBRA, 2020, 48 (03) :1132-1149
[3]   π-Baer rings [J].
Birkenmeier, Gary F. ;
Kara, Yeliz ;
Tercan, Adnan .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2018, 17 (02)
[4]   Projection invariant extending rings [J].
Birkenmeier, Gary F. ;
Tercan, Adnan ;
Yucel, Canan C. .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2016, 15 (07)
[5]   s.Baer and s.Rickart Modules [J].
Birkenmeier, Gary F. ;
LeBlanc, Richard L. .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2015, 14 (08)
[6]   THE EXTENDING CONDITION RELATIVE TO SETS OF SUBMODULES [J].
Birkenmeier, Gary F. ;
Tercan, Adnan ;
Yucel, Canan C. .
COMMUNICATIONS IN ALGEBRA, 2014, 42 (02) :764-778
[7]   Triangular matrix representations [J].
Birkenmeier, GF ;
Heatherly, HE ;
Kim, JY ;
Park, JK .
JOURNAL OF ALGEBRA, 2000, 230 (02) :558-595
[8]   A GENERALIZATION OF FPF RINGS [J].
BIRKENMEIER, GF .
COMMUNICATIONS IN ALGEBRA, 1989, 17 (04) :855-884
[9]   Modules in which every fully invariant submodule is essential in a direct summand [J].
Birkenmeier, GF ;
Müller, BJ ;
Rizvi, ST .
COMMUNICATIONS IN ALGEBRA, 2002, 30 (03) :1395-1415
[10]   The fully invariant extending property for abelian groups [J].
Birkenmeier, GF ;
Calugareanu, G ;
Fuchs, L ;
Goeters, HP .
COMMUNICATIONS IN ALGEBRA, 2001, 29 (02) :673-685