Sirtuin 1: A Target for Kidney Diseases

被引:63
作者
Kong, Lili [1 ,2 ]
Wu, Hao [1 ,2 ]
Zhou, Wenhua [1 ]
Luo, Manyu [1 ,2 ]
Tan, Yi [2 ,3 ]
Miao, Lining [1 ]
Cai, Lu [2 ,3 ]
机构
[1] Jilin Univ, Hosp 2, Dept Nephrol, Changchun 130041, Peoples R China
[2] Univ Louisville, Dept Pediat, Kosair Childrens Hosp Res Inst, Louisville, KY 40292 USA
[3] Univ Louisville, Dept Pharmacol & Toxicol, Louisville, KY 40292 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
NF-KAPPA-B; PARIETAL EPITHELIAL-CELLS; TO-MESENCHYMAL TRANSITION; BETA-INDUCED APOPTOSIS; DE-NOVO EXPRESSION; MITOCHONDRIAL BIOGENESIS; CALORIE RESTRICTION; PODOCYTE APOPTOSIS; PROXIMAL TUBULE; RENAL FIBROSIS;
D O I
10.2119/molmed.2014.00211
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Sirtuin 1 (SIRT1) is an evolutionarily conserved NAD(+)-dependent histone deacetylase that is necessary for caloric restriction-related lifespan extension. SIRT1, as an intracellular energy sensor, detects the concentration of intracellular NAD(+) and uses this information to adapt cellular energy output to cellular energy requirements. Previous studies on SIRT1 have confirmed its beneficial effects on cellular immunity to oxidative stress, reduction of fibrosis, suppression of inflammation, inhibition of apoptosis, regulation of metabolism, induction of autophagy and regulation of blood pressure. All of the above biological processes are involved in the pathogenesis of kidney diseases. Therefore, the activation of SIRT1 may become a therapeutic target to improve the clinical outcome of kidney diseases. In this review, we give an overview of SIRT1 and its molecular targets as well as SIRT1-modulated biological processes, with a particular focus on the role of SIRT1 in kidney diseases.
引用
收藏
页码:87 / 97
页数:11
相关论文
共 154 条
[1]   Sirtuin activators [J].
Alcain, Francisco J. ;
Villalba, Jose M. .
EXPERT OPINION ON THERAPEUTIC PATENTS, 2009, 19 (04) :403-414
[2]  
Andersson U, 2002, J LEUKOCYTE BIOL, V72, P1084
[3]   Histone-acetylation: a link between Alzheimer's disease and post-traumatic stress disorder? [J].
Bahari-Javan, Sanaz ;
Sananbenesi, Farahnaz ;
Fischer, Andre .
FRONTIERS IN NEUROSCIENCE, 2014, 8
[4]   Grape seed proanthocyanidin extracts ameliorate podocyte injury by activating peroxisome proliferator-activated receptor-γ coactivator 1α in low-dose streptozotocin-and high-carbohydrate/high-fat diet-induced diabetic rats [J].
Bao, Lei ;
Cai, Xiaxia ;
Dai, Xiaoqian ;
Ding, Ye ;
Jiang, Yanfei ;
Li, Yujie ;
Zhang, Zhaofeng ;
Li, Yong .
FOOD & FUNCTION, 2014, 5 (08) :1872-1880
[5]   The Role of Dietary Histone Deacetylases (HDACs) Inhibitors in Health and Disease [J].
Bassett, Shalome A. ;
Barnett, Matthew P. G. .
NUTRIENTS, 2014, 6 (10) :4273-4301
[6]   Hypoxia-Induced Autophagy Is Mediated through Hypoxia-Inducible Factor Induction of BNIP3 and BNIP3L via Their BH3 Domains [J].
Bellot, Gregory ;
Garcia-Medina, Raquel ;
Gounon, Pierre ;
Chiche, Johanna ;
Roux, Daniele ;
Pouyssegur, Jacques ;
Mazure, Nathalie M. .
MOLECULAR AND CELLULAR BIOLOGY, 2009, 29 (10) :2570-2581
[7]   Can We Target Tubular Damage to Prevent Renal Function Decline in Diabetes? [J].
Bonventre, Joseph V. .
SEMINARS IN NEPHROLOGY, 2012, 32 (05) :452-462
[8]   How does SIRT1 affect metabolism, senescence and cancer? [J].
Brooks, Christopher L. ;
Gu, Wei .
NATURE REVIEWS CANCER, 2009, 9 (02) :123-128
[9]   Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase [J].
Brunet, A ;
Sweeney, LB ;
Sturgill, JF ;
Chua, KF ;
Greer, PL ;
Lin, YX ;
Tran, H ;
Ross, SE ;
Mostoslavsky, R ;
Cohen, HY ;
Hu, LS ;
Cheng, HL ;
Jedrychowski, MP ;
Gygi, SP ;
Sinclair, DA ;
Alt, FW ;
Greenberg, ME .
SCIENCE, 2004, 303 (5666) :2011-2015
[10]   High glucose induces Smad activation via the transcriptional coregulator p300 and contributes to cardiac fibrosis and hypertrophy [J].
Bugyei-Twum, Antoinette ;
Advani, Andrew ;
Advani, Suzanne L. ;
Zhang, Yuan ;
Thai, Kerri ;
Kelly, Darren J. ;
Connelly, Kim A. .
CARDIOVASCULAR DIABETOLOGY, 2014, 13