Cesaro sequence spaces via (p, q)-calculus and compact matrix operators

被引:3
作者
Yaying, Taja [1 ]
Hazarika, Bipan [2 ]
Mursaleen, Mohammad [3 ,4 ]
机构
[1] Dera Natung Govt Coll, Dept Math, Itanagar 791113, Arunachal Prade, India
[2] Gauhati Univ, Dept Math, Gauhati 781014, Assam, India
[3] China Med Univ Taiwan, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
[4] St 1 West, Aligarh 202002, Uttar Pradesh, India
关键词
(p; q)-Cesaro matrix; q)-Cesaro sequence space; alpha-; beta-; gamma-duals; Matrix transformations; Compact operators; Hausdorff measure of non-compactness; HAUSDORFF MEASURE; L(P); NONCOMPACTNESS; INCLUDE; DOMAIN;
D O I
10.1007/s41478-022-00417-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we construct (p, q)-analogue C(p, q) of Cesaro matrix C-1 of order 1 and study its properties. We introduce (p, q)-Cesaro sequence spaces chi(p,q)(s) and chi(p,q)(infinity) generated by the domain of matrix C(p, q) in the spaces l(s) and l(infinity), respectively. We study some topological properties and inclusion relations, obtain Schauder basis of chi(p,q)(s) and alpha-, beta- and gamma-duals of the spaces chi(p,q)(s) and chi(p,q)(infinity). We characterize matrix mappings from the spaces chi(p,q)(s) and chi(p,q)(infinity) space mu is an element of {l(infinity), c, c(0)}. Finally, we characterize certain classes of compact operators on the newly defined spaces using Hausdorff measure of non compactness.
引用
收藏
页码:1535 / 1553
页数:19
相关论文
共 36 条
[1]   q-Cesaro matrix and q-statistical convergence [J].
Aktuglu, Huseyin ;
Bekar, Serife .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (16) :4717-4723
[2]   On the Euler sequence spaces which include the spaces lp and l∞I [J].
Altay, B ;
Basar, F ;
Mursaleen, M .
INFORMATION SCIENCES, 2006, 176 (10) :1450-1462
[3]  
Aydin C., 2004, Hokkaido Math. J., V33, P383, DOI 10.14492/hokmj/1285766172
[4]  
Aydin C., 2005, DEMONTRATION MATH, V38, P641, DOI 10.1515/dema-2005-0313
[5]  
Ayman Mursaleen M., 2021, ASIAN-EUR J MATH, V2250140, DOI [10.1142/S1793557122501406, DOI 10.1142/S1793557122501406]
[6]  
Bakery AA, 2021, J INEQUAL APPL, V2021, DOI 10.1186/s13660-021-02572-4
[7]  
Basar F., 1999, MATH J IBARAKI U, V31, P1, DOI DOI 10.5036/MJIU.31.1
[8]  
Bekar S., 2010, THESIS E MEDITARRANE
[9]  
Boos J., 2000, CLASSICAL MODERN MET
[10]  
Burban I.M., 1994, Integral Transform. Spec. Funct, V2, P15, DOI [10.1080/10652469408819035, DOI 10.1080/10652469408819035]