Proof of two conjectures of Brenti and Simion on Kazhdan-Lusztig polynomials

被引:3
作者
Caselli, F [1 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Matemat G Castelnuovo, I-00185 Rome, Italy
关键词
Kazhdan-Lusztig polynomials; symmetric group; Bruhat order;
D O I
10.1023/B:JACO.0000011936.75388.14
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We find an explicit formula for the Kazhdan-Lusztig polynomials Pu-i,Pu-a,v(i) of the symmetric group G(n) where, for a, i, n is an element of N such that 1less than or equal toaless than or equal toiless than or equal ton, we denote by u(i,a)=s(a)s(a+1)...s(i-1) and by v(i) the element of G(n) obtained by inserting n in position i in any permutation of G(n-1) allowed to rise only in the first and in the last place. Our result implies, in particular, the validity of two conjectures of Brenti and Simion [4, Conjectures 4.2 and 4.3], and includes as a special case a result of Shapiro, Shapiro and Vainshtein [13, Theorem 1]. All the proofs are purely combinatorial and make no use of the geometry of the corresponding Schubert varieties.
引用
收藏
页码:171 / 187
页数:17
相关论文
共 13 条
[2]   Combinatorial properties of the Kazhdan-Lusztig R-polynomials for S-n [J].
Brenti, F .
ADVANCES IN MATHEMATICS, 1997, 126 (01) :21-51
[3]   A COMBINATORIAL FORMULA FOR KAZHDAN-LUSZTIG POLYNOMIALS [J].
BRENTI, F .
INVENTIONES MATHEMATICAE, 1994, 118 (02) :371-394
[4]   Explicit formulae for some Kazhdan-Lusztig polynomials [J].
Brenti, F ;
Simion, R .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2000, 11 (03) :187-196
[5]   On the topology of some homogeneous spaces [J].
Ehresmann, C .
ANNALS OF MATHEMATICS, 1934, 35 :396-443
[6]  
Humphreys J. E., 1990, REFLECTION GROUPS CO
[7]   REPRESENTATIONS OF COXETER GROUPS AND HECKE ALGEBRAS [J].
KAZHDAN, D ;
LUSZTIG, G .
INVENTIONES MATHEMATICAE, 1979, 53 (02) :165-184
[8]  
Kazhdan G., 1980, P S PURE MATH, V34, P185
[9]   CRITERION FOR SMOOTHNESS OF SCHUBERT VARIETIES IN SL(N)/B [J].
LAKSHMIBAI, V ;
SANDHYA, B .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1990, 100 (01) :45-52
[10]  
LASCOUX A, 1981, ASTERISQUE, P249