Relaxation in BV for a class of functionals without continuity assumptions

被引:2
作者
Amar, M. [1 ]
De Cicco, V. [1 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Metodi & Modelli Matemat, I-00161 Rome, Italy
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2008年 / 15卷 / 1-2期
关键词
relaxation; BV-functions; Gamma-convergence;
D O I
10.1007/s00030-007-6014-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to prove new relaxation and Gamma-convergence theorems on BV(Omega) for a class of integral functionals, whose integrands have a product type structure, but they do not satisfy any assumptions of coerciveness or continuity with respect to the spatial variable.
引用
收藏
页码:25 / 44
页数:20
相关论文
共 34 条
[21]   A remark on the L1-lower semicontinuity for integral functionals in BV [J].
Fusco, N ;
Giannetti, F ;
Verde, A .
MANUSCRIPTA MATHEMATICA, 2003, 112 (03) :313-323
[22]  
FUSCO N, IN PRESS REMARK SERR
[23]  
Giaquinta M., 1998, Cartesian Currents in the Calculus of Variations, Part I: Cartesian Currents, Part II: Variational Integrals
[24]  
Giusti E., 1984, MINIMAL SURFACES FUN
[25]  
Gori M, 2002, J CONVEX ANAL, V9, P475
[26]  
GORI M, 2003, DIFFER INTEGRAL EQU, V16, P51
[27]   The common root of the geometric conditions in Serrin's lower semicontinuity theorem [J].
Gori, Michele ;
Maggi, Francesco .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2005, 184 (01) :95-114
[28]  
Maggi F, 2003, J CONVEX ANAL, V10, P477
[29]  
MAZYA VG, 1985, SPRINGER SERIES SOVI
[30]  
Miranda M., 1964, ANN SCUOLA NORM SUP, V18, P515