Relaxation in BV for a class of functionals without continuity assumptions

被引:2
作者
Amar, M. [1 ]
De Cicco, V. [1 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Metodi & Modelli Matemat, I-00161 Rome, Italy
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2008年 / 15卷 / 1-2期
关键词
relaxation; BV-functions; Gamma-convergence;
D O I
10.1007/s00030-007-6014-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to prove new relaxation and Gamma-convergence theorems on BV(Omega) for a class of integral functionals, whose integrands have a product type structure, but they do not satisfy any assumptions of coerciveness or continuity with respect to the spatial variable.
引用
收藏
页码:25 / 44
页数:20
相关论文
共 34 条
[1]   A NOTION OF TOTAL VARIATION DEPENDING ON A METRIC WITH DISCONTINUOUS COEFFICIENTS [J].
AMAR, M ;
BELLETTINI, G .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1994, 11 (01) :91-133
[2]   A relaxation result in BV for integral functionals with discontinuous integrands [J].
Amar, Micol ;
De Cicco, Virginia ;
Fusco, Nicola .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2007, 13 (02) :396-412
[3]  
[Anonymous], 2002, Γ-convergence for Beginners. Oxford lecture series in mathematics and its applications
[4]  
[Anonymous], 1992, LECT NOTES MEASURE T
[5]  
[Anonymous], FUNCTIONS BOUNDED VA
[6]  
BOUCHITTE G, 1993, ANN SC NORM SUP PISA, V20, P483
[7]  
Buttazzo G., 1989, Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations
[8]  
CARRIERO M, 1988, J MATH PURE APPL, V67, P359
[9]  
Dal Maso G., 1993, INTRO GAMMA CONVERGE
[10]  
DALMASO G, 1980, MANUSCRIPTA MATH, V30, P387