Temperature Correction and Result Evaluation of Lunar Mineralogical Spectrometer for Chang'E-5 Mission

被引:8
作者
Lv, Gang [1 ,2 ]
Li, Jinning [1 ,2 ]
Li, Chunlai [1 ,2 ]
Jin, Jian [1 ,2 ]
Lin, Yue [1 ,2 ]
Xu, Rui [1 ,2 ]
He, Zhiping [1 ,2 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Tech Phys, Key Lab Space Act Optoelect Technol, Shanghai 200080, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2022年 / 60卷
基金
中国国家自然科学基金;
关键词
Moon; Temperature distribution; Surface treatment; Thermal analysis; Temperature measurement; Adaptive optics; Instruments; Acousto-optic tunable filter (AOTF) spectrometer; in situ spectral detection of lunar surface; lunar mineralogical spectrometer (LMS); temperature correction; thermal analysis model; MOON; REGION;
D O I
10.1109/TGRS.2021.3112743
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The lunar mineralogical spectrometer (LMS) is the primary scientific payload of the Chang'E-5 mission of the China Lunar Exploration Program. The LMS is responsible for the in situ spectral detection and analysis of the sampling areas of interest on the Moon's surface. The LMS needs to adapt to a wide range of temperature conditions, varying between the lunar morning to noon, based on the time, location, and work process of the LMS. Thus, ensuring consistency in the spectral data obtained at high temperatures and a wide range of operating environments is a major challenge. In this study, a thermal analysis model of the LMS is built, and the temperature variation of the LMS during its operation on the lunar surface is simulated using the instrument workflow that is based on the simulation results. Independent experiments were also carried out for the temperature-sensitive components in the LMS, and subsequently, the temperature correction model and model coefficients for each temperature-sensitive component were obtained. The final correction result was a quantitative assessment of the ground test data and the in situ lunar detection data. For the ground tests at different temperatures, the average errors were found to be 0.57% and 1.2% for the short- and medium-wave data, respectively, after applying the temperature correction. When the LMS was operating on the lunar surface, the average errors for the short- and medium-ware data after the temperature correction were calculated to be 0.59% and 0.8%, respectively.
引用
收藏
页数:8
相关论文
共 33 条
[1]   The MicrOmega Investigation Onboard Hayabusa2 [J].
Bibring, J. -P. ;
Hamm, V. ;
Langevin, Y. ;
Pilorget, C. ;
Arondel, A. ;
Bouzit, M. ;
Chaigneau, M. ;
Crane, B. ;
Darie, A. ;
Evesque, C. ;
Hansotte, J. ;
Gardien, V. ;
Gonnod, L. ;
Leclech, J. -C. ;
Meslier, L. ;
Redon, T. ;
Tamiatto, C. ;
Tosti, S. ;
Thoores, N. .
SPACE SCIENCE REVIEWS, 2017, 208 (1-4) :401-412
[2]   The MicrOmega Investigation Onboard ExoMars [J].
Bibring, Jean-Pierre ;
Hamm, Vincent ;
Pilorget, Cedric ;
Vago, Jorge L. .
ASTROBIOLOGY, 2017, 17 (6-7) :621-626
[3]   Characterization of the High-Resolution Infrared Radiation Sounder Using Lunar Observations [J].
Burgdorf, Martin J. ;
Mueller, Thomas G. ;
Buehler, Stefan A. ;
Prange, Marc ;
Brath, Manfred .
REMOTE SENSING, 2020, 12 (09)
[4]   The Moon Mineralogy Mapper (M3) imaging spectrometer for lunar science: Instrument description, calibration, on-orbit measurements, science data calibration and on-orbit validation [J].
Green, R. O. ;
Pieters, C. ;
Mouroulis, P. ;
Eastwood, M. ;
Boardman, J. ;
Glavich, T. ;
Isaacson, P. ;
Annadurai, M. ;
Besse, S. ;
Barr, D. ;
Buratti, B. ;
Cate, D. ;
Chatterjee, A. ;
Clark, R. ;
Cheek, L. ;
Combe, J. ;
Dhingra, D. ;
Essandoh, V. ;
Geier, S. ;
Goswami, J. N. ;
Green, R. ;
Haemmerle, V. ;
Head, J. ;
Hovland, L. ;
Hyman, S. ;
Klima, R. ;
Koch, T. ;
Kramer, G. ;
Kumar, A. S. K. ;
Lee, K. ;
Lundeen, S. ;
Malaret, E. ;
McCord, T. ;
McLaughlin, S. ;
Mustard, J. ;
Nettles, J. ;
Petro, N. ;
Plourde, K. ;
Racho, C. ;
Rodriquez, J. ;
Runyon, C. ;
Sellar, G. ;
Smith, C. ;
Sobel, H. ;
Staid, M. ;
Sunshine, J. ;
Taylor, L. ;
Thaisen, K. ;
Tompkins, S. ;
Tseng, H. .
JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2011, 116
[5]   Illumination and communication conditions at the Mons Rumker region based on the improved Lunar Orbiter Laser Altimeter data [J].
Hao, Weifeng ;
Zhu, Chang ;
Li, Fei ;
Yan, Jianguo ;
Ye, Mao ;
Barriot, Jean-Pierre .
PLANETARY AND SPACE SCIENCE, 2019, 168 :73-82
[6]   Global Regolith Thermophysical Properties of the Moon From the Diviner Lunar Radiometer Experiment [J].
Hayne, Paul O. ;
Bandfield, Joshua L. ;
Siegler, Matthew A. ;
Vasavada, Ashwin R. ;
Ghent, Rebecca R. ;
Williams, Jean-Pierre ;
Greenhagen, Benjamin T. ;
Aharonson, Oded ;
Elder, Catherine M. ;
Lucey, Paul G. ;
Paige, David A. .
JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2017, 122 (12) :2371-2400
[7]   Visible and near-infrared imaging spectrometer and its preliminary results from the Chang'E 3 project [J].
He, Z. P. ;
Wang, B. Y. ;
Lv, G. ;
Li, C. L. ;
Yuan, L. Y. ;
Xu, R. ;
Chen, K. ;
Wang, J. Y. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2014, 85 (08)
[8]   Operating principles and detection characteristics of the Visible and Near-Infrared Imaging Spectrometer in the Chang'e-3 [J].
He, Zhi-Ping ;
Wang, Bin-Yong ;
Lu, Gang ;
Li, Chun-Lai ;
Yuan, Li-Yin ;
Xu, Rui ;
Liu, Bin ;
Chen, Kai ;
Wang, Jian-Yu .
RESEARCH IN ASTRONOMY AND ASTROPHYSICS, 2014, 14 (12) :1567-1577
[9]   Mars Mineralogical Spectrometer (MMS) on the Tianwen-1 Mission [J].
He, Zhiping ;
Xu, Rui ;
Li, Chunlai ;
Yuan, Liyin ;
Liu, Chengyu ;
Lv, Gang ;
Jin, Jian ;
Xie, Jianan ;
Kong, Chuifeng ;
Li, Feifei ;
Chen, Xiaowen ;
Wang, Rong ;
Xu, Sheng ;
Pan, Wei ;
Wu, Jincai ;
Li, Changkun ;
Wang, Tianhong ;
Jin, Haijun ;
Chen, Hourui ;
Qiu, Jun ;
Wang, Jianyu .
SPACE SCIENCE REVIEWS, 2021, 217 (02)
[10]   Measurement and Correction Model for Temperature Dependence of an Acousto-Optic Tunable Filter (AOTF) Infrared Spectrometer for Lunar Surface Detection [J].
He, Zhiping ;
Li, Jinning ;
Li, Chunlai ;
Xu, Rui .
APPLIED SPECTROSCOPY, 2020, 74 (01) :81-87