Asymptotic Bifurcation Solutions for Perturbed Kuramoto-Sivashinsky Equation

被引:3
作者
Huang Qiong-Wei [1 ]
Tang Jia-Shi [1 ]
机构
[1] Hunan Univ, Coll Mech & Aerosp, Changsha 410082, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
bifurcation; perturbed Kuramoto-Sivashinsky equation; center manifold reduction method; multiscale expansion method; PROPAGATION;
D O I
10.1088/0253-6102/55/4/32
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Stability and dynamic bifurcation in the perturbed Kuramoto-Sivashinsky (KS) equation with Dirichlet boundary condition are investigated by using central manifold reduction procedure. The result shows, as the bifurcation parameter crosses a critical value, the system undergoes a pitchfork bifurcation to produce two asymptotically stable solutions. Furthermore, when the distance from bifurcation is of comparable order epsilon(2)(vertical bar epsilon vertical bar << 1), the first two terms in epsilon-expansions for the new asymptotic bifurcation solutions are derived by multiscale expansion method. Such information is useful to the bifurcation control.
引用
收藏
页码:685 / 687
页数:3
相关论文
共 15 条
[1]   Feedback control of the Kuramoto-Sivashinsky equation [J].
Armaou, A ;
Christofides, PD .
PHYSICA D, 2000, 137 (1-2) :49-61
[2]  
Changpin Li, 1998, APPL MATH JCU, V13, P263
[3]   Transition to spatiotemporal chaos in the damped Kuramoto-Sivashinsky equation [J].
Elder, KR ;
Gunton, JD ;
Goldenfeld, N .
PHYSICAL REVIEW E, 1997, 56 (02) :1631-1634
[4]  
Haberman R., 2004, APPL PARTIAL DIFFERE, P769
[5]   BIFURCATION OF A LIMIT CYCLE IN THE AC-DRIVEN COMPLEX GINZBURG-LANDAU EQUATION [J].
Huang, Qiongwei ;
Tang, Jiashi .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2010, 14 (01) :129-141
[6]   PERSISTENT PROPAGATION OF CONCENTRATION WAVES IN DISSIPATIVE MEDIA FAR FROM THERMAL EQUILIBRIUM [J].
KURAMOTO, Y ;
TSUZUKI, T .
PROGRESS OF THEORETICAL PHYSICS, 1976, 55 (02) :356-369
[7]   Noisy Kuramoto-Sivashinsky equation for an erosion model [J].
Lauritsen, KB ;
Cuerno, R ;
Makse, HA .
PHYSICAL REVIEW E, 1996, 54 (04) :3577-3580
[8]   Symmetry-breaking bifurcation in O(2) x O(2)-symmetric nonlinear large problems and its application to the Kuramoto-Sivashinsky equation in two spatial dimensions [J].
Li, CP ;
Yang, ZH .
CHAOS SOLITONS & FRACTALS, 2004, 22 (02) :451-468
[9]   Bifurcation analysis of the Kuramoto-Sivashinsky equation in one spatial dimension [J].
Li, CP ;
Chen, GR .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2001, 11 (09) :2493-2499
[10]  
Ma T., 2005, BIFURCATION THEORY A, P392