Observation of molecular self-assembly events in massively parallel microdroplet arrays

被引:29
作者
Toprakcioglu, Zenon [1 ]
Challa, Pavan Kumar [1 ]
Levin, Aviad [1 ]
Knowles, Tuomas P. J. [1 ,2 ]
机构
[1] Univ Cambridge, Dept Chem, Ctr Misfolding Dis, Lensfield Rd, Cambridge CB2 1EW, England
[2] Cavendish Lab, Dept Phys, JJ Thomson Ave, Cambridge CB3 OHE, England
基金
欧洲研究理事会; 英国生物技术与生命科学研究理事会; 英国惠康基金;
关键词
MICROFLUIDIC SYSTEM; MICROGELS; RELEASE; ASSAYS; WATER;
D O I
10.1039/c8lc00862k
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The self-assembly of peptide and protein molecules into nanoscale filaments is a process associated with both biological function and malfunction. Microfluidic techniques can provide powerful tools in the study of such aggregation phenomena while providing access to exploring the role of molecular interactions in disease development. Yet, a common challenge encountered in the study of protein aggregation is the difficulty in achieving spatial and temporal control of the underlying processes. Here, we present a planar (2-D) device allowing for both the generation and confinement of 10000 monodisperse water-in-oil droplets in an array of chambers with a trapping efficiency of 99%. Due to the specific geometry of the device, droplets can be formed and immediately trapped on the same chip, without the need for continuous flow of the oil phase. Furthermore, we demonstrate the capability of this device as a platform to study the aggregation kinetics and determine stochastic molecular nanoscale self-assembly events in a highly parallel manner for the aggregation of the dipeptide, diphenylalanine, the core recognition motif of the A-42 peptide associated with Alzheimer's disease. The ability to reproducibly generate and confine monodisperse water-in-oil droplets with an extremely high trapping efficiency while maintaining entrapment under zero-flow conditions, on timescales compatible with observing molecular self-assembly events, renders it promising for numerous potential further applications in the biological and biophysical fields.
引用
收藏
页码:3303 / 3309
页数:7
相关论文
共 42 条
[1]  
Abbyad P, 2011, LAB CHIP, V11, P813, DOI [10.1039/c0lc00104j, 10.1039/c01c00104j]
[2]   Dynamic microfluidic control of supramolecular peptide self-assembly [J].
Arnon, Zohar A. ;
Vitalis, Andreas ;
Levin, Aviad ;
Michaels, Thomas C. T. ;
Caflisch, Amedeo ;
Knowles, Tuomas P. J. ;
Adler-Abramovich, Lihi ;
Gazit, Ehud .
NATURE COMMUNICATIONS, 2016, 7
[3]   A double droplet trap system for studying mass transport across a droplet-droplet interface [J].
Bai, Yunpeng ;
He, Ximin ;
Liu, Dingsheng ;
Patil, Santoshkumar N. ;
Bratton, Dan ;
Huebner, Ansgar ;
Hollfelder, Florian ;
Abell, Chris ;
Huck, Wilhelm T. S. .
LAB ON A CHIP, 2010, 10 (10) :1281-1285
[4]   On-chip single-copy real-time reverse-transcription PCR in isolated picoliter droplets [J].
Beer, N. Reginald ;
Wheeler, Elizabeth K. ;
Lee-Houghton, Lorenna ;
Watkins, Nicholas ;
Nasarabadi, Shanavaz ;
Hebert, Nicole ;
Leung, Patrick ;
Arnold, Don W. ;
Bailey, Christopher G. ;
Colston, Bill W. .
ANALYTICAL CHEMISTRY, 2008, 80 (06) :1854-1858
[5]   Simple, robust storage of drops and fluids in a microfluidic device [J].
Boukellal, Hakim ;
Selimovic, Seila ;
Jia, Yanwei ;
Cristobal, Galder ;
Fraden, Seth .
LAB ON A CHIP, 2009, 9 (02) :331-338
[6]   Microfluidic devices fabricated using fast wafer-scale LED-lithography patterning [J].
Challa, Pavan K. ;
Kartanas, Tadas ;
Charmet, Jerome ;
Knowles, Tuomas P. J. .
BIOMICROFLUIDICS, 2017, 11 (01)
[7]  
Doh I., 2012, APPL PHYS LETT, V100, P1113
[8]   Insights into the variability of nucleated amyloid polymerization by a minimalistic model of stochastic protein assembly [J].
Eugene, Sarah ;
Xue, Wei-Feng ;
Robert, Philippe ;
Doumic, Marie .
JOURNAL OF CHEMICAL PHYSICS, 2016, 144 (17)
[9]  
Ferreira A. S., 2003, PHYS REV LETT, V90, P4
[10]   Probing the Self-Assembly Mechanism of Diphenylalanine-Based Peptide Nanovesicles and Nanotubes [J].
Guo, Cong ;
Luo, Yin ;
Zhou, Ruhong ;
Wei, Guanghong .
ACS NANO, 2012, 6 (05) :3907-3918