3D Dynamic Hand Gestures Recognition Using the Leap Motion Sensor and Convolutional Neural Networks

被引:17
|
作者
Lupinetti, Katia [1 ]
Ranieri, Andrea [1 ]
Giannini, Franca [1 ]
Monti, Marina [1 ]
机构
[1] CNR, Ist Matemat Applicata & Tecnol Informat Enrico Ma, Via De Marini 6, I-16149 Genoa, Italy
来源
AUGMENTED REALITY, VIRTUAL REALITY, AND COMPUTER GRAPHICS, AVR 2020, PT I | 2020年 / 12242卷
关键词
3D dynamic hand gesture recognition; Deep learning; Temporal information representation; 3D pattern recognition; Real-time interaction; SIGN-LANGUAGE RECOGNITION; TRACKING;
D O I
10.1007/978-3-030-58465-8_31
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Defining methods for the automatic understanding of gestures is of paramount importance in many application contexts and in Virtual Reality applications for creating more natural and easy-to-use human-computer interaction methods. In this paper, we present a method for the recognition of a set of non-static gestures acquired through the Leap Motion sensor. The acquired gesture information is converted in color images, where the variation of hand joint positions during the gesture are projected on a plane and temporal information is represented with color intensity of the projected points. The classification of the gestures is performed using a deep Convolutional Neural Network (CNN). A modified version of the popular ResNet-50 architecture is adopted, obtained by removing the last fully connected layer and adding a new layer with as many neurons as the considered gesture classes. The method has been successfully applied to the existing reference dataset and preliminary tests have already been performed for the real-time recognition of dynamic gestures performed by users.
引用
收藏
页码:420 / 439
页数:20
相关论文
共 50 条
  • [21] On the Classification of Kathakali Hand Gestures Using Support Vector Machines and Convolutional Neural Networks
    Bhavanam, Lakshmi Tulasi
    Iyer, Ganesh Neelakanta
    2020 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND SIGNAL PROCESSING (AISP), 2020,
  • [22] An efficient attention module for 3d convolutional neural networks in action recognition
    Jiang, Guanghao
    Jiang, Xiaoyan
    Fang, Zhijun
    Chen, Shanshan
    APPLIED INTELLIGENCE, 2021, 51 (10) : 7043 - 7057
  • [23] An efficient attention module for 3d convolutional neural networks in action recognition
    Guanghao Jiang
    Xiaoyan Jiang
    Zhijun Fang
    Shanshan Chen
    Applied Intelligence, 2021, 51 : 7043 - 7057
  • [24] Facial Expression Recognition Using 3D Convolutional Neural Network
    Byeon, Young-Hyen
    Kwak, Keun-Chang
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2014, 5 (12) : 107 - 112
  • [25] 3D Hand Gestures Segmentation and Optimized Classification Using Deep Learning
    Khan, Fawad Salam
    Mohd, Mohd Norzali Haji
    Soomro, Dur Muhammad
    Bagchi, Susama
    Khan, M. Danial
    IEEE ACCESS, 2021, 9 : 131614 - 131624
  • [26] A facial expression recognition method based on ensemble of 3D convolutional neural networks
    Sun, Wenyun
    Zhao, Haitao
    Jin, Zhong
    NEURAL COMPUTING & APPLICATIONS, 2019, 31 (07) : 2795 - 2812
  • [27] A facial expression recognition method based on ensemble of 3D convolutional neural networks
    Wenyun Sun
    Haitao Zhao
    Zhong Jin
    Neural Computing and Applications, 2019, 31 : 2795 - 2812
  • [28] Event Recognition based on 3D Convolutional Networks
    Chen, Rong
    Yu, Yuanlong
    Huang, ZhiYong
    2018 IEEE 8TH ANNUAL INTERNATIONAL CONFERENCE ON CYBER TECHNOLOGY IN AUTOMATION, CONTROL, AND INTELLIGENT SYSTEMS (IEEE-CYBER), 2018, : 45 - 50
  • [29] Hand Gesture Recognition from 2D Images by Using Convolutional Capsule Neural Networks
    Guler, Osman
    Yucedag, Ibrahim
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2022, 47 (02) : 1211 - 1225
  • [30] Hand Gesture Recognition from 2D Images by Using Convolutional Capsule Neural Networks
    Osman Güler
    İbrahim Yücedağ
    Arabian Journal for Science and Engineering, 2022, 47 : 1211 - 1225