C1,α regularity for the normalized p-Poisson problem

被引:36
作者
Attouchi, Amal [1 ]
Parviainen, Mikko [1 ]
Ruosteenoja, Eero [1 ]
机构
[1] Univ Jyvaskyla, Dept Math & Stat, POB 35, Jyvaskyla 40014, Finland
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2017年 / 108卷 / 04期
基金
芬兰科学院;
关键词
Normalized p-Laplacian; p-Poisson problem; Viscosity solutions; Local C-1; C-alpha regularity; TUG-OF-WAR; VISCOSITY SOLUTIONS; WEAK SOLUTIONS; EQUIVALENCE; LAPLACIAN; EQUATION; PROOF;
D O I
10.1016/j.matpur.2017.05.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the normalized p-Poisson problem Delta(N)(p)u = f in Omega subset of R-n. The normalized p -Laplacian Delta(N)(p)u := vertical bar Du vertical bar(2-P)Delta(p)u is in non -divergence form and arises for example from stochastic games. We prove C-loc(1-alpha) regularity with nearly optimal alpha for viscosity solutions of this problem. In the case f is an element of L-infinity boolean AND C and p > 1 we use methods both from viscosity and weak theory, whereas in the case f is an element of L-q boolean AND C, q > max(n, E/2, 2), and p > 2 we rely on the tools of nonlinear potential theory. (C) 2017 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:553 / 591
页数:39
相关论文
共 43 条
[1]  
[Anonymous], 1968, LINEAR QUASILINEAR E
[2]  
[Anonymous], 1986, THESIS WASHINGTON U
[3]  
[Anonymous], 1992, Bull. Amer. Math. Soc.
[4]  
[Anonymous], 1995, Fully nonlinear elliptic equations
[5]  
Araujo D., 2015, INTERIOR C ESTIMATE
[6]  
Araujo D., 2016, PREPRINT
[7]  
Armstrong SN, 2012, T AM MATH SOC, V364, P595
[8]   ON THE DIRICHLET BOUNDARY VALUE PROBLEM FOR THE NORMALIZED p-LAPLACIAN EVOLUTION [J].
Banerjee, Agnid ;
Garofalo, Nicola .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2015, 14 (01) :1-21
[9]   Regularity for radial solutions of degenerate fully nonlinear equations [J].
Birindelli, I. ;
Demengel, F. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (17) :6237-6249
[10]   Regularity and uniqueness of the first eigenfunction for singular fully nonlinear operators [J].
Birindelli, I. ;
Demengel, F. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 249 (05) :1089-1110