Hodge theory of p-adic varieties: a survey

被引:0
作者
Niziol, Wieslawa [1 ]
机构
[1] Sorbonne Univ, CNRS, IMJ PRG, 4 Pl Jussieu, F-75005 Paris, France
关键词
p-adic cohomology; analytic varieties; SEMI-STABLE REDUCTION; ABELIAN-VARIETIES; FUNDAMENTAL GROUP; COHOMOLOGY; CONJECTURE; REPRESENTATIONS; FINITENESS; REGULATORS; FIELDS; SPACES;
D O I
10.4064/ap200516-31-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
p-adic Hodge theory is one of the most powerful tools in modern arithmetic geometry. In this survey, we will review p-adic Hodge theory of algebraic varieties, present current developments in p-adic Hodge theory of analytic varieties, and discuss some of its applications to problems in number theory. This is an extended version of a talk at the Jubilee Congress for the 100th anniversary of the Polish Mathematical Society, Krakow, 2019.
引用
收藏
页码:63 / 86
页数:24
相关论文
共 79 条
[1]  
ABRASHKIN VA, 1987, MATH USSR IZV+, V51, P1
[2]  
André Y, 2002, INVENT MATH, V148, P285, DOI 10.1007/s002220100207
[3]  
[Anonymous], 2013, EUROPEAN C MATH, P259
[4]   Explicit Chabauty-Kim for the split Cartan modular curve of level 13 [J].
Balakrishnan, Jennifer S. ;
Dogra, Netan ;
Muller, J. Steffen ;
Tuitman, Jan ;
Vonk, Jan .
ANNALS OF MATHEMATICS, 2019, 189 (03) :885-944
[5]  
Beilinson A, 2013, CAMB J MATH, V1, P1
[6]   p-ADIC PERIODS AND DERIVED DE RHAM COHOMOLOGY [J].
Beilinson, A. .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 25 (03) :715-738
[7]  
Berger L, 2002, INVENT MATH, V148, P219, DOI 10.1007/s002220100202
[8]  
Bertolini M, 2015, J ALGEBRAIC GEOM, V24, P355
[9]  
Bhatt B., 2012, ARXIV12046560
[10]  
Bhatt B., 2019, ARXIV190508229