A note on the universal consistency of the kernel distribution function estimator

被引:17
作者
Chacon, Jose E. [1 ]
Rodriguez-Casal, Alberto [2 ]
机构
[1] Univ Extremadura, Dept Matemat, Badajoz, Spain
[2] Univ Santiago de Compostela, Dept Estat & Invest Operat, Santiago De Compostela, Spain
关键词
Data-dependent bandwidth; Distribution function; Kernel estimator; Minimal smoothness assumptions; Uniform in bandwidth consistency; DENSITY-FUNCTION; BANDWIDTH CONSISTENCY; UNIFORM; CONVERGENCE; INEQUALITY;
D O I
10.1016/j.spl.2010.05.007
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The problem of universal consistency of data driven bandwidth selectors for the kernel distribution estimator is analyzed. We provide a uniform in bandwidth result for the kernel estimate of a continuous distribution function. Our smoothness assumption is minimal in the sense that if the true distribution function has some discontinuity then the kernel estimate is no longer consistent. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1414 / 1419
页数:6
相关论文
共 23 条
[11]   Uniform in bandwidth consistency of kernel-type function estimators [J].
Einmahl, U ;
Mason, DM .
ANNALS OF STATISTICS, 2005, 33 (03) :1380-1403
[12]   Reducing the variance by smoothing [J].
Fernholz, LT .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1997, 57 (01) :29-38
[13]   Uniform in Bandwidth Estimation of Integral Functionals of the Density Function [J].
Gine, Evarist ;
Mason, David M. .
SCANDINAVIAN JOURNAL OF STATISTICS, 2008, 35 (04) :739-761
[14]   An exponential inequality for the distribution function of the kernel density estimator, with applications to adaptive estimation [J].
Gine, Evarist ;
Nickl, Richard .
PROBABILITY THEORY AND RELATED FIELDS, 2009, 143 (3-4) :569-596
[15]   RANDOM APPROXIMATIONS TO SOME MEASURES OF ACCURACY IN NONPARAMETRIC CURVE ESTIMATION [J].
MARRON, JS ;
HARDLE, W .
JOURNAL OF MULTIVARIATE ANALYSIS, 1986, 20 (01) :91-113
[16]  
MASON DM, 2010, TEST IN PRESS, DOI DOI 10.1007/S11749-010-0188-0
[17]   THE TIGHT CONSTANT IN THE DVORETZKY-KIEFER-WOLFOWITZ INEQUALITY [J].
MASSART, P .
ANNALS OF PROBABILITY, 1990, 18 (03) :1269-1283
[18]  
MCDIARMID C, 1989, LOND MATH S, V141, P148
[19]   ESTIMATION OF A PROBABILITY DENSITY-FUNCTION AND MODE [J].
PARZEN, E .
ANNALS OF MATHEMATICAL STATISTICS, 1962, 33 (03) :1065-&
[20]   REMARKS ON SOME NONPARAMETRIC ESTIMATES OF A DENSITY-FUNCTION [J].
ROSENBLATT, M .
ANNALS OF MATHEMATICAL STATISTICS, 1956, 27 (03) :832-837