A note on the universal consistency of the kernel distribution function estimator

被引:17
作者
Chacon, Jose E. [1 ]
Rodriguez-Casal, Alberto [2 ]
机构
[1] Univ Extremadura, Dept Matemat, Badajoz, Spain
[2] Univ Santiago de Compostela, Dept Estat & Invest Operat, Santiago De Compostela, Spain
关键词
Data-dependent bandwidth; Distribution function; Kernel estimator; Minimal smoothness assumptions; Uniform in bandwidth consistency; DENSITY-FUNCTION; BANDWIDTH CONSISTENCY; UNIFORM; CONVERGENCE; INEQUALITY;
D O I
10.1016/j.spl.2010.05.007
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The problem of universal consistency of data driven bandwidth selectors for the kernel distribution estimator is analyzed. We provide a uniform in bandwidth result for the kernel estimate of a continuous distribution function. Our smoothness assumption is minimal in the sense that if the true distribution function has some discontinuity then the kernel estimate is no longer consistent. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1414 / 1419
页数:6
相关论文
共 23 条
[1]  
[Anonymous], 1986, Probability and Measure
[2]  
[Anonymous], 1964, Theory Probab Appl, DOI DOI 10.1137/1109069
[3]   THE CONSISTENCY OF AUTOMATIC KERNEL DENSITY ESTIMATES [J].
DEVROYE, L ;
PENROD, CS .
ANNALS OF STATISTICS, 1984, 12 (04) :1231-1249
[4]   THE EQUIVALENCE OF WEAK, STRONG AND COMPLETE CONVERGENCE IN L1 FOR KERNEL DENSITY ESTIMATES [J].
DEVROYE, L .
ANNALS OF STATISTICS, 1983, 11 (03) :896-904
[5]  
DEVROYE L, 1989, ANN I H POINCARE-PR, V25, P533
[6]  
Devroye L., 2001, SPRINGER SERIES STAT
[7]  
Devroye L., 1985, Nonparametric density estimation: the L 1 view
[8]  
DONY J, 2008, THESIS VRIJE U BRUSS
[9]  
Dony J, 2006, AUST J STAT, V35, P105
[10]   Uniform in bandwidth consistency of conditional U-statistics [J].
Dony, Julia ;
Mason, David M. .
BERNOULLI, 2008, 14 (04) :1108-1133