Low-temperature hydrothermal synthesis of phase-pure rutile titania nanocrystals: Time temperature tuning of morphology and photocatalytic activity

被引:49
作者
Nag, Manaswita [1 ]
Basak, Pratyay [1 ]
Manorama, Sunkara V. [1 ]
机构
[1] Indian Inst Chem Technol, Nanomat Lab, Inorgan & Phys Chem Div, Hyderabad 500007, Andhra Pradesh, India
关键词
nanostructures; chemical synthesis; electron-diffraction; X-ray diffraction; surface properties;
D O I
10.1016/j.materresbull.2006.11.032
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, a simple and efficient methodology for the low-temperature synthesis of phase-pure nanocrystalline rutile TiO2 with tuned morphology is reported. Control on morphology has been achieved by simple variation of the hydrothermal process, starting with titanium-tetrachloride without using mineralizers, additives or templating agents. The X-ray diffraction (XRD) and selected area electron diffraction (SAED) patterns showed no other phases of TiO2 establishing the formation of phase-pure rutile titania in the entire temperature range of synthesis (40-150 degrees C) and most noticeably even at a considerably low temperature (40 degrees C). Fourier transform infrared (Fr-IR) spectra strongly indicated the presence of hydroxyl group or surface adsorbed water and the thermogravimetry and differential then-no-gravimetry (TG-DTG) showed no phase change up to 1000 degrees C. A combination of reaction parameters (temperature, time) with a thorough transmission electron microscopy (TEM) study demonstrated the formation of phase-pure rutile titania nanocrystals as nano-rods, bunched nano-spindles or spherical nanoparticles depending on the hydrothermal reaction conditions. The photocatalytic activity of the synthesized nanocrystals has been successfully evaluated on the photodegradation of methyl orange (NIO), a well-known pollutant azo-dye, as a model reaction. (C) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1691 / 1704
页数:14
相关论文
共 62 条
[21]   DENSIFICATION OF NANOSTRUCTURED TITANIA ASSISTED BY A PHASE-TRANSFORMATION [J].
KUMAR, KNP ;
KEIZER, K ;
BURGGRAAF, AJ ;
OKUBO, T ;
NAGAMOTO, H ;
MOROOKA, S .
NATURE, 1992, 358 (6381) :48-51
[22]   SYNTHESIS AND TEXTURAL PROPERTIES OF UNSUPPORTED AND SUPPORTED RUTILE (TIO2) MEMBRANES [J].
KUMAR, KNP ;
KEIZER, K ;
BURGGRAAF, AJ ;
OKUBO, T ;
NAGAMOTO, H .
JOURNAL OF MATERIALS CHEMISTRY, 1993, 3 (09) :923-929
[23]  
LEVINE EM, 1975, PHASE DIAGRAMS CERAM
[24]   Growth mechanism and growth habit of oxide crystals [J].
Li, WJ ;
Shi, EW ;
Zhong, WZ ;
Yin, ZW .
JOURNAL OF CRYSTAL GROWTH, 1999, 203 (1-2) :186-196
[25]   Hot-fluid annealing for crystalline titanium dioxide nanoparticles in stable suspension [J].
Lin, J ;
Lin, Y ;
Liu, P ;
Meziani, MJ ;
Allard, LF ;
Sun, YP .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (38) :11514-11518
[26]   Preparation of controllable crystalline nano-TiO2 by homogeneous hydrolysis [J].
Liu, W ;
Chen, AP ;
Lin, JP ;
Dai, ZM ;
Qiu, W ;
Liu, W ;
Zhu, MQ ;
Usuda, S .
CHEMISTRY LETTERS, 2004, 33 (04) :390-391
[27]   Synthesis of mesostructured titania with controlled crystalline framework [J].
Luo, HM ;
Wang, C ;
Yan, YS .
CHEMISTRY OF MATERIALS, 2003, 15 (20) :3841-3846
[28]   Pore-structure stability of nanostructured rutile titania containing a "structure-directing second-phase stabilizer" [J].
Nair, PK ;
Mizukami, F ;
Nair, J ;
Salou, M ;
Oosawa, Y ;
Izutsu, H ;
Maeda, K ;
Okubo, T .
MATERIALS RESEARCH BULLETIN, 1998, 33 (10) :1495-1502
[29]   ENTHALPY OF ANATASE-RUTILE TRANSFORMATION [J].
NAVROTSKY, A ;
KLEPPA, OJ .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1967, 50 (11) :626-+
[30]  
Nyquist R. A., 1971, INFRARED SPECTRA INO, P215