Legendre modified moments for Euler's constant

被引:4
作者
Prevost, Marc [1 ]
机构
[1] Univ Littoral, Lab Math Pures & Appl, Ctr Univ Mi Voix, F-62228 Calais, France
关键词
Legendre moments; Euler's constant; pade approximations;
D O I
10.1016/j.cam.2007.09.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Polynomial moments are often used for the computation of Gauss quadrature to stabilize the numerical calculation of the orthogonal polynomials, see [W. Gautschi, Computational aspects of orthogonal polynomials, in: P. Nevai (Ed.), Orthogonal Polynomials-Theory and Practice, NATO ASI Series, Series C: Mathematical and Physical Sciences, vol. 294. Kluwer, Dordrecht, 1990, pp. 181-216 [6]; W. Gautschi, On the sensitivity of orthogonal polynomials to perturbations in the moments, Numer. Math. 48(4) (1986) 369-382 [5]; W. Gautschi, On generating orthogonal polynomials, SIAM J. Sci. Statist. Comput. 3(3) (1982) 289-317 [4]] or numerical resolution of linear systems [C. Brezinski, Pade-type approximation and general orthogonal polynomials, ISNM, vol. 50, Basel, Boston, Stuttgart, Birkhauser, 1980 [3]]. These modified moments can also be used to accelerate the convergence of sequences to a real or complex numbers if the error satisfies some properties as done in [C. Brezinski, Acceleration de la convergence en analyse numerique, Lecture Notes in Mathematics, vol. 584. Springer, Berlin, New York, 1977; M. Prevost, Pade-type approximants with orthogonal generating polynomials, J. Comput. Appl. Math. 9(4) (1983) 333-346]. In this paper, we use Legendre modified moments to accelerate the convergence of the sequence H-n - log(n + 1) to the Eulor's constant gamma. A formula for the error is given. It is proved that it is a totally monotonic sequence. At last. we give applications to the arithmetic property of gamma. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:484 / 492
页数:9
相关论文
共 16 条
[1]  
[Anonymous], INTRO THEORIE ANAL P
[2]   SOME NEW ALGORITHMS FOR HIGH-PRECISION COMPUTATION OF EULERS CONSTANT [J].
BRENT, RP ;
MCMILLAN, EM .
MATHEMATICS OF COMPUTATION, 1980, 34 (149) :305-312
[3]  
Brezinski C., 1980, ISNM, V50
[4]  
Brezinski C., 1977, LECT NOTES MATH, V584
[5]   ON GENERATING ORTHOGONAL POLYNOMIALS [J].
GAUTSCHI, W .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1982, 3 (03) :289-317
[6]   ON THE SENSITIVITY OF ORTHOGONAL POLYNOMIALS TO PERTURBATIONS IN THE MOMENTS [J].
GAUTSCHI, W .
NUMERISCHE MATHEMATIK, 1986, 48 (04) :369-382
[7]  
GAUTSCHI W, 1990, NATO ADV SCI I C-MAT, V294, P181
[8]  
KRAMER S, 2007, THESIS GEORG AUGUST
[9]   Criteria for irrationality of generalized Euler's constant [J].
Pilehrood, TH ;
Pilehrood, KH .
JOURNAL OF NUMBER THEORY, 2004, 108 (01) :169-185