New exact travelling wave solutions for some nonlinear evolution equations, Part II

被引:4
作者
Zhang, Huiqun [1 ]
机构
[1] Qingdao Univ, Dept Math, Qingdao 266071, Shandong, Peoples R China
关键词
D O I
10.1016/j.chaos.2006.10.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By using new solutions of an auxiliary ordinary differential equation, a direct algebraic method is described to construct the exact travelling wave solutions for nonlinear evolution equation. By this method some nonlinear evolution equations are investigated and new exact travelling wave solutions are explicitly obtained with the aid of symbolic computation. (C) 2006 Published by Elsevier Ltd.
引用
收藏
页码:1328 / 1334
页数:7
相关论文
共 12 条
[1]   Extended tanh-function method and its applications to nonlinear equations [J].
Fan, EG .
PHYSICS LETTERS A, 2000, 277 (4-5) :212-218
[2]   SOLITON-SOLUTIONS OF A COUPLED KORTEWEG-DEVRIES EQUATION [J].
HIROTA, R ;
SATSUMA, J .
PHYSICS LETTERS A, 1981, 85 (8-9) :407-408
[3]   Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations [J].
Liu, SK ;
Fu, ZT ;
Liu, SD ;
Zhao, Q .
PHYSICS LETTERS A, 2001, 289 (1-2) :69-74
[4]   An automated tanh-function method for finding solitary wave solutions to non-linear evolution equations [J].
Parkes, EJ ;
Duffy, BR .
COMPUTER PHYSICS COMMUNICATIONS, 1996, 98 (03) :288-300
[5]   Auxiliary equation method and new solutions of Klein-Gordon equations [J].
Sirendaoreji .
CHAOS SOLITONS & FRACTALS, 2007, 31 (04) :943-950
[6]   New exact travelling wave solutions for the Kawahara and modified Kawahara equations [J].
Sirendaoreji .
CHAOS SOLITONS & FRACTALS, 2004, 19 (01) :147-150
[7]   SOLITARY WAVE SOLUTIONS FOR VARIANT BOUSSINESQ EQUATIONS [J].
WANG, ML .
PHYSICS LETTERS A, 1995, 199 (3-4) :169-172
[8]   Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics [J].
Wang, ML ;
Zhou, YB ;
Li, ZB .
PHYSICS LETTERS A, 1996, 216 (1-5) :67-75
[9]   A generalized Hirota-Satsuma coupled Korteweg-de Vries equation and Miura transformations [J].
Wu, YT ;
Geng, XG ;
Hu, XB ;
Zhu, SM .
PHYSICS LETTERS A, 1999, 255 (4-6) :259-264
[10]   The extended Fan's sub-equation method and its application to KdV-MKdV, BKK and variant Boussinesq equations [J].
Yomba, E .
PHYSICS LETTERS A, 2005, 336 (06) :463-476