Convergence properties of bias-eliminating algorithms for errors-in-variables identification

被引:31
作者
Söderström, T
Hong, M
Zheng, WX
机构
[1] Uppsala Univ, Dept Informat Technol, Div Syst & Control, SE-75105 Uppsala, Sweden
[2] Univ Western Sydney, Sch QMMS, Penrith, NSW 1797, Australia
关键词
system identification; errors-in-variables; bias-eliminating least squares';
D O I
10.1002/acs.879
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper considers the problem of dynamic errors-in-variables identification. Convergence properties of the previously proposed bias-eliminating algorithms are investigated. An error dynamic equation for the bias-eliminating parameter estimates is derived. It is shown that the convergence of the bias-eliminating algorithms is basically determined by the eigenvalue of largest magnitude of a system matrix in the estimation error dynamic equation. When this system matrix has all its eigenvalues well inside the unit circle, the bias-eliminating algorithms can converge fast. In order to avoid possible divergence of the iteration-type bias-eliminating algorithms in the case of high noise, the bias-eliminating problem is reformulated as a minimization problem associated with a concentrated loss function. A variable projection algorithm is proposed to efficiently solve the resulting minimization problem. A numerical simulation study is conducted to demonstrate the theoretical analysis. Copyright (c) 2005 John Wiley & Sons, Ltd.
引用
收藏
页码:703 / 722
页数:20
相关论文
共 19 条
[1]   THE FRISCH SCHEME IN DYNAMIC SYSTEM-IDENTIFICATION [J].
BEGHELLI, S ;
GUIDORZI, RP ;
SOVERINI, U .
AUTOMATICA, 1990, 26 (01) :171-176
[2]  
Ekman Mats, 2005, IFAC P, V38, P815
[3]   IDENTIFICATION OF LINEAR-SYSTEMS WITH INPUT AND OUTPUT NOISE - THE KOOPMANS-LEVIN METHOD [J].
FERNANDO, KV ;
NICHOLSON, H .
IEE PROCEEDINGS-D CONTROL THEORY AND APPLICATIONS, 1985, 132 (01) :30-36
[4]   Separable nonlinear least squares: the variable projection method and its applications [J].
Golub, G ;
Pereyra, V .
INVERSE PROBLEMS, 2003, 19 (02) :R1-R26
[5]   DIFFERENTIATION OF PSEUDO-INVERSES AND NONLINEAR LEAST-SQUARES PROBLEMS WHOSE VARIABLES SEPARATE [J].
GOLUB, GH ;
PEREYRA, V .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1973, 10 (02) :413-432
[6]   ROBUST PARAMETRIC TRANSFER-FUNCTION ESTIMATION USING COMPLEX LOGARITHMIC FREQUENCY-RESPONSE DATA [J].
GUILLAUME, P ;
PINTELON, R ;
SCHOUKENS, J .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1995, 40 (07) :1180-1190
[7]   NON-LINEAR TIME SERIES REGRESSION [J].
HANNAN, EJ .
JOURNAL OF APPLIED PROBABILITY, 1971, 8 (04) :767-&
[8]   IDENTIFICATION OF STOCHASTIC LINEAR-SYSTEMS IN PRESENCE OF INPUT NOISE [J].
SODERSTROM, T .
AUTOMATICA, 1981, 17 (05) :713-725
[9]   Perspectives on errors-in-variables estimation for dynamic systems [J].
Söderström, T ;
Soverini, U ;
Mahata, K .
SIGNAL PROCESSING, 2002, 82 (08) :1139-1154
[10]   COMBINED INSTRUMENTAL VARIABLE AND SUBSPACE FITTING APPROACH TO PARAMETER-ESTIMATION OF NOISY INPUT-OUTPUT SYSTEMS [J].
STOICA, P ;
CEDERVALL, M ;
ERIKSSON, A .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1995, 43 (10) :2386-2397