Adaptive estimation of FCG using nonlinear state-space models

被引:1
|
作者
Moussas, VC [1 ]
Katsikas, SK
Lainiotis, DG
机构
[1] Technol Educ Inst Athens, Sch Technol Applicat STEF, GR-12210 Egaleo, Greece
[2] Univ Aegean, Dept Informat & Commun Syst, Karlovassi, Greece
[3] Univ Patras, Dept Comp Engn & Informat, Patras, Greece
关键词
adaptive algorithms; ALF; EKF; fatigue crack growth; failure prediction; nonlinear FCG models; nonlinear prediction; stochastic models;
D O I
10.1081/SAP-200064462
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, an efficient adaptive nonlinear algorithm for estimation and identification, the so-called adaptive Lainiotis filter (ALF), is applied to the problem of fatigue crack growth (FCG) estimation, identification, and prediction of the final crack (failure). A suitable nonlinear state-space FCG model is introduced for both ALF and extended Kalman filter (EKF). Both algorithms are tested in order to compare their efficiency. Through extensive analysis and simulation, it is demonstrated that the ALF has superior performance both in FCG estimation, as well as in predicting the remaining lifetime to failure. Furthermore, it is shown that the ALF is faster and easier to implement in a parallel/distributed processing mode, and much more robust than the classic EKF.
引用
收藏
页码:705 / 722
页数:18
相关论文
共 50 条
  • [1] State estimation for nonlinear state-space transmission models of tuberculosis
    Strydom, Duayne
    le Roux, Johan Derik
    Craig, Ian Keith
    RISK ANALYSIS, 2023, 43 (02) : 339 - 357
  • [2] Gaussian Variational State Estimation for Nonlinear State-Space Models
    Courts, Jarrad
    Wills, Adrian
    Schon, Thomas
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 : 5979 - 5993
  • [3] Parameter estimation in a class of nonlinear state-space models
    Enescu, Mihai
    Koivunen, Visa
    2005 IEEE/SP 13TH WORKSHOP ON STATISTICAL SIGNAL PROCESSING (SSP), VOLS 1 AND 2, 2005, : 193 - 196
  • [4] Estimation methods for nonlinear state-space models in ecology
    Pedersen, M. W.
    Berg, C. W.
    Thygesen, U. H.
    Nielsen, A.
    Madsen, H.
    ECOLOGICAL MODELLING, 2011, 222 (08) : 1394 - 1400
  • [5] Learning nonlinear state-space models using autoencoders
    Masti, Daniele
    Bemporad, Alberto
    AUTOMATICA, 2021, 129
  • [6] Hysteresis Identification Using Nonlinear State-Space Models
    Noel, J. P.
    Esfahani, A. F.
    Kerschen, G.
    Schoukens, J.
    NONLINEAR DYNAMICS, VOL 1, 34TH IMAC, 2016, : 323 - 338
  • [7] ESTIMATION OF CORTICAL CONNECTIVITY FROM E/MEG USING NONLINEAR STATE-SPACE MODELS
    Cheung, Bing Leung P.
    Van Veen, Barry D.
    2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 769 - 772
  • [8] Sensitivity models for nonlinear filters with application to recursive parameter estimation for nonlinear state-space models
    Bohn, C
    Unbehauen, H
    IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, 2001, 148 (02): : 137 - 145
  • [9] State-space estimation with uncertain models
    Sayed, AH
    Subramanian, A
    TOTAL LEAST SQUARES AND ERRORS-IN-VARIABLES MODELING: ANALYSIS, ALGORITHMS AND APPLICATIONS, 2002, : 191 - 202
  • [10] Learning nonlinear state-space models using deep autoencoders
    Masti, Daniele
    Bemporad, Alberto
    2018 IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2018, : 3862 - 3867