Singular limit problem for the Keller-Segel system and drift-diffusion system in scaling critical spaces

被引:16
作者
Kurokiba, Masaki [1 ]
Ogawa, Takayoshi [2 ]
机构
[1] Muroran Inst Technol, Grad Sch Engn, Muroran, Hokkaido 0128578, Japan
[2] Tohoku Univ, Res Alliance Ctr Math Sci, Math Inst, Sendai, Miyagi 9808578, Japan
关键词
Keller-Segel equation; Drift-diffusion system; Singular limit problem; Maximal regularity; Critical space; Global well-posedness; Scaling invariance; PARABOLIC-ELLIPTIC SYSTEM; TIME BLOW-UP; GLOBAL EXISTENCE; RADIAL SOLUTIONS; WELL-POSEDNESS; BANACH-SPACE; EQUATIONS; BEHAVIOR; UNIQUENESS; OPERATORS;
D O I
10.1007/s00028-019-00527-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a singular limit problem for the Cauchy problem of the Keller-Segel equation in a critical function space. We show that a solution to the Keller-Segel system in a scaling critical function space converges to a solution to the drift-diffusion system of parabolic-elliptic type (the simplified Keller-Segel model) in the critical space strongly as the relaxation time tau ->infinity For the proof of singular limit problem, we employ generalized maximal regularity for the heat equation and use it systematically with the sequence of embeddings between the interpolation spaces B & x2d9;q,sigma s(Rn) and F & x2d9;q,sigma s(Rn)
引用
收藏
页码:421 / 457
页数:37
相关论文
共 42 条
[21]   The uniform boundedness and threshold for the global existence of the radial solution to a drift-diffusion system [J].
Kurokiba, M ;
Nagai, T ;
Ogawa, T .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2006, 5 (01) :97-106
[22]  
Kurokiba M., SINGULAR LIMIT UNPUB
[23]   Well-posedness for the drift-diffusion system in Lp arising from the semiconductor device simulation [J].
Kurokiba, Masaki ;
Ogawa, Takayoshi .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 342 (02) :1052-1067
[24]   Finite time blow up for a solution to system of the drift-diffusion equations in higher dimensions [J].
Kurokiba, Masaki ;
Ogawa, Takayoshi .
MATHEMATISCHE ZEITSCHRIFT, 2016, 284 (1-2) :231-253
[25]  
Lemarié-Rieusset PG, 2013, ADV DIFFERENTIAL EQU, V18, P1189
[26]   INITIAL VALUE-PROBLEM FROM SEMICONDUCTOR-DEVICE THEORY [J].
MOCK, MS .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1974, 5 (04) :597-612
[27]   Blowup of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domains [J].
Nagai, T .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2001, 6 (01) :37-55
[28]  
Nagai T., 1995, Adv. Math. Sci. Appl., V5, P581
[29]  
Nagai T., 1997, Funkc. Ekvacioj, V40, P411
[30]   Global Existence of Solutions to a Parabolic-Elliptic System of Drift-Diffusion Type in R2 [J].
Nagai, Toshitaka ;
Ogawa, Takayoshi .
FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2016, 59 (01) :67-112