Singular limit problem for the Keller-Segel system and drift-diffusion system in scaling critical spaces

被引:16
作者
Kurokiba, Masaki [1 ]
Ogawa, Takayoshi [2 ]
机构
[1] Muroran Inst Technol, Grad Sch Engn, Muroran, Hokkaido 0128578, Japan
[2] Tohoku Univ, Res Alliance Ctr Math Sci, Math Inst, Sendai, Miyagi 9808578, Japan
关键词
Keller-Segel equation; Drift-diffusion system; Singular limit problem; Maximal regularity; Critical space; Global well-posedness; Scaling invariance; PARABOLIC-ELLIPTIC SYSTEM; TIME BLOW-UP; GLOBAL EXISTENCE; RADIAL SOLUTIONS; WELL-POSEDNESS; BANACH-SPACE; EQUATIONS; BEHAVIOR; UNIQUENESS; OPERATORS;
D O I
10.1007/s00028-019-00527-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a singular limit problem for the Cauchy problem of the Keller-Segel equation in a critical function space. We show that a solution to the Keller-Segel system in a scaling critical function space converges to a solution to the drift-diffusion system of parabolic-elliptic type (the simplified Keller-Segel model) in the critical space strongly as the relaxation time tau ->infinity For the proof of singular limit problem, we employ generalized maximal regularity for the heat equation and use it systematically with the sequence of embeddings between the interpolation spaces B & x2d9;q,sigma s(Rn) and F & x2d9;q,sigma s(Rn)
引用
收藏
页码:421 / 457
页数:37
相关论文
共 42 条